Chapter 11: Problem 10
Consider Gregory's expansion $$ \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1} $$ a. Derive Gregory's expansion using the definition $$ \tan ^{-1} x=\int_{0}^{x} \frac{d t}{1+t^{2}} $$ expanding the integrand in a Maclaurin series, and integrating the resulting series term by term. b. From this result, derive Gregory's series for \(\pi\) by inserting an appropriate value for \(x\) in the series expansion for \(\tan ^{-1} x\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.