Chapter 11: Problem 1
For those sequences that converge, find the limit \(\lim _{n \rightarrow \infty} a_{n}\) a. \(a_{n}=\frac{n^{2}+1}{n^{3}+1} .\) b. \(a_{n}=\frac{3 n+1}{n+2}\). c. \(a_{n}=\left(\frac{3}{n}\right)^{1 / n}\). d. \(a_{n}=\frac{2 n^{2}+4 n^{3}}{n^{3}+5 \sqrt{2+n^{6}}} .\) e. \(a_{n}=n \ln \left(1+\frac{1}{n}\right)\). f. \(a_{n}=n \sin \left(\frac{1}{n}\right)\). g. \(a_{n}=\frac{(2 n+3) !}{(n+1) !} .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.