Chapter 5: Problem 6
Many biological reactions are very sensitive to \(\mathrm{pH}\). This can readily be incorporated into the rate laws because protolytic reactions can be assumed to be much faster than other rates in most cases. For example, in enzyme mechanisms the ionization states of a few key protein side chains are often critical. Suppose that two ionizable groups on the enzyme are critical for catalytic activity and that one of them needs to be protonated and the other deprotonated. The protolytic reactions can be written as $$ \mathrm{EH}_{2} \rightleftharpoons \mathrm{EH}+\mathrm{H}^{\prime} \rightleftharpoons \mathrm{E}+2 \mathrm{H}^{\prime} $$ If only the species \(\mathrm{EH}\) is catalytically active and the protolytic reactions are much more rapid than the other steps in the reaction, all of the rate constants that multiply the free enzyme concentration in the rate law have to be multiplied by the fraction of enzyme present as EH. A. Calculate the fraction of free enzyme present as EH at a given pH. Your answer should contain the concentration of \(\mathrm{H}^{+}\)and the ionization constants of the two side chains, \(\left.K_{\mathrm{E} 1}=[\mathrm{E}]\left[\mathrm{H}^{+}\right] / \mathrm{EH}\right]\) and \(\left.K_{\mathrm{E} 2}=[\mathrm{EH}]\left[\mathrm{H}^{+}\right] / \mathrm{EH}_{2}\right]\). B. Assume that ES in the Michaelis-Menten mechanism (Eq. 5-2) also exists in three protonation states, \(\mathrm{ESH}_{2}\), ESH, and ES, with only ESH being catalytically active. Calculate the fraction of the enzyme-substrate complex present as EHS. Designate the ionization constants as \(K_{\mathrm{ESI}}\) and \(K_{\mathrm{ES} 2}\). C. Use the results of parts \(\mathrm{A}\) and \(\mathrm{B}\) to derive equations for the \(\mathrm{pH}\) dependence of \(V_{\mathrm{m}^{\prime}} K_{\mathrm{M}}\), and \(V_{\mathrm{m} /} K_{\mathrm{M}}\). Measurement of the \(\mathrm{pH}\) dependence of the steady. state parameters permits determination of the ionization constants, and sometimes identification of the amino acid side chains.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.