Chapter 5: Problem 5
Consider the binding of a protein, P, to a DNA segment (gene regulation). Assume that only one binding site for P exists on the DNA and that the concentration of DNA binding sites is much less than the concentration of \(P\). The reaction mechanism for binding can be represented as $$ \mathrm{P}+\mathrm{DNA} \rightleftharpoons \mathrm{P}-\mathrm{DNA} \rightarrow \mathrm{P}-\mathrm{DNA}^{\prime} $$ where the second step represents a conformational change in the protein. Calculate the rate law for the appearance of P-DNA' under the following conditions. A. The first step in the mechanism equilibrates rapidly relative to the rate of the overall reaction and [P-DNA] \ll<[DNA]. B. The intermediate, P-DNA, is in a steady state. C. The first step in the mechanism equilibrates rapidly relative to the rate of the overall reaction and the concentrations of DNA and P-DNA are comparable. Express the rate law in terms of the total concentration of DNA and P-DNA, that is, [DNA] + [P-DNA]. D. The following initial rates were measured with an initial DNA concentration of \(1 \mu \mathrm{M}\). \begin{tabular}{rc} {\([\mathrm{P}](\mu \mathrm{M})\)} & \(10^{4} \operatorname{Rate}(\mathrm{M} / \mathrm{s})\) \\ \hline 100 & \(8.33\) \\ 50 & \(7.14\) \\ 20 & \(5.00\) \\ 10 & \(3.33\) \\ \hline \end{tabular} Which of the rate laws is consistent with the data?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.