Chapter 2: Problem 2
The alcohol dehydrogenase reaction, which removes ethanol from your blood, proceeds according to the following reaction: \(\mathrm{NAD}^{+}+\)Ethanol \(\rightleftarrows \mathrm{NADH}+\) Acetaldehyde Under standard conditions ( \(298 \mathrm{~K}, 1 \mathrm{~atm}, \mathrm{pH} 7.0, \mathrm{pMg} 3\), and an ionic strength of \(0.25 \mathrm{M}\) ), the standard enthalpies and free energies of formation of the reactants are as follows: \begin{tabular}{lrr} & \(H^{\circ}(\mathrm{kJ} / \mathrm{mol})\) & \(G^{\circ}(\mathrm{kJ} / \mathrm{mol})\) \\ \hline NAD \(^{+}\) & \(-10.3\) & \(1059.1\) \\ NADH & \(-41.4\) & \(1120.1\) \\ Ethanol & \(-290.8\) & \(63.0\) \\ Acetaldehyde & \(-213.6\) & \(24.1\) \\ \hline \end{tabular} A. Calculate \(\Delta G^{\circ}, \Delta H^{\circ}\), and \(\Delta S^{\circ}\) for the alcohol dehydrogenase reaction under standard conditions. B. Under standard conditions, what is the equilibrium constant for this reaction? Will the equilibrium constant increase or decrease as the temperature is increased?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.