Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In an \(\alpha\) -helix, A. side-chain groups can align to give a polar face. B. cach peptide bond forms two hydrogen bonds. C. there are 3.6 amino acids per turn. D. all of the above. E. none of the above.

Short Answer

Expert verified
Question: Examine the following statements about an α-helix and choose the correct answer: A. Side-chain groups can align to give a polar face. B. Each peptide bond forms two hydrogen bonds. C. There are 3.6 amino acids per turn. D. All of the above. Answer: D. All of the above. Explanation: Statements A and C are true, while statement B is false. However, since the true statements are included in the "all of the above" option, the correct answer is D.

Step by step solution

01

Examine Statement A

We start by examining the statement A, "side-chain groups can align to give a polar face." In an α-helix, the side-chain groups are oriented outward, away from the helical axis. Therefore, it is possible for the side-chain groups to align and form a polar face on one side of the helix, while the other side can be more hydrophobic. This statement is true.
02

Examine Statement B

Next, we examine statement B, "each peptide bond forms two hydrogen bonds." In an α-helix, each amino acid participates in two hydrogen bonds - one with the carbonyl group of the amino acid four residues away and the other with the amide group of the amino acid also four residues away. However, this means that each amino acid forms two hydrogen bonds rather than each peptide bond. Therefore, this statement is false.
03

Examine Statement C

Now, let's look at statement C, "there are 3.6 amino acids per turn." The α-helix has a specific geometry, with 3.6 amino acids per turn, resulting in a helical pitch (the length of one complete turn along the axis) of 5.4 Å. This statement is true.
04

Determine the correct answer

Since statements A and C are true, the correct answer for this exercise is D. All of the above.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Chaperone proteins A. all require ATP to exert their effect. B. cleave incorrect disulfide bonds, allowing correct ones to subsequently form. C. guide the folding of polypeptide chains into patterns that would be thermodynamically unstable without the presence of chaperones. D. of the Hsp70 class are involved in transport of proteins across mitochondrial and endoplasmic reticulum membranes. E. act only on fully synthesized polypeptide chains.

Proteins may be separated according to size by A. isoclectric focusing. B. polyacrylamide gel electrophoresis. C. ion exchange chromatography. D. molecular exclusion chromatography. E. reverse-phase HPLC.

After purification, the Edman reaction was used to sequence a dodecapeptide, yielding the following data: the C-terminal amino acid is isolcucine; the N-terminal amino acid is methionine; and the peptide fragments are Ala-Ala- Ile, Leu-Arg-Lys-Lys-Glu-Lys-Glu-Ala, Met-Gly-Leu, and Met-Phe-Pro-Met. What is the sequence of this peptide?

Many pathological hyperlipoproteinemias result from abnormalitics in the rates of synthesis or clearance of lipoproteins in the blood. They are usually characterized by elevated levels of cholesterol and/or triacylglycerols in the blood. Type I has very high plasma triacylglycerol levels \((>1000 \mathrm{g} / \mathrm{dL})\) because of an accumulation of chylomicrons. Type II (familial hypercholesterolemia) has elevated cholesterol, specifically in the form of LDL. Another abnormality of lipoproteins is hypolipoproteinemia in which lipoproteins are not formed because of the inability to make a particular apoprotein. All lipoprotein particles in the blood have the same general architecture which includes A. a neutral core of triacylglycerols and cholesteryl esters. B. amphipathic lipids oriented with their polar head groups at the surface and their hydrophobic chains oriented toward the core. C. most surface apoproteins containing amphipathic helices. D. unesterificd cholesterol associated with the outer shell. E. all of the above.

Many pathological hyperlipoproteinemias result from abnormalitics in the rates of synthesis or clearance of lipoproteins in the blood. They are usually characterized by elevated levels of cholesterol and/or triacylglycerols in the blood. Type I has very high plasma triacylglycerol levels \((>1000 \mathrm{g} / \mathrm{dL})\) because of an accumulation of chylomicrons. Type II (familial hypercholesterolemia) has elevated cholesterol, specifically in the form of LDL. Another abnormality of lipoproteins is hypolipoproteinemia in which lipoproteins are not formed because of the inability to make a particular apoprotein. In abecalipoproteinemia chylomicrons, VLDL and LDL are absent from the blood. Which of the following is correct? A. In this discase, no apolipoproteins are synthesized. B. If the blood from these individuals were centrifuged, the lipid bands would be found primarily in the upper half of the tube. C. Failure to synthesize apolipoprotein ApoB-100 and ApoB-48 would account for the pattern shown in this disease. D. Apolipoproteins are composed mostly of \(\beta\) structure. E. All of the above.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free