Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) A particular silica glass waveguide is reported to have a loss coefficient of0.050dB/cm(power out/power in, defined in Problem 20-22) for 514-nm-wavelength light. The thickness of the waveguide is 0.60μmand the length is 3.0 cm. The angle of incidence(θiin the figure ) 70°is . What fraction of the incident radiant intensity is transmitted through the waveguide?

(b) If the index of refraction of the waveguide material is 1.5, what is the wavelength of light inside the waveguide? What is the frequency?

Short Answer

Expert verified

(a) The power out/power quotient is 0.9649.

(b) The light inside the waveguide has a wavelength is 343 nm and the light inside the waveguide has a frequency is5.83×1014Hz

Step by step solution

01

Definition of waveguide and frequency

  • A Waveguide is a hollow metallic tube with a consistent cross section for transmitting electromagnetic waves by successive reflections from the tube's inner walls.
  • The number of waves that travel through a particular spot in a given amount of time is referred to as frequency.
  • It also refers to the number of cycles or vibrations a body in periodic motion goes through in one unit of time.
02

Determine the power out/power quotient

(a)

It is necessary to calculate the power out/power quotient.

The following formula can be used to determine the quotient power out/power.

PoweroutPowerin=10-1dB/m/10

dB/m=decibel per meter

I=an optical fiber of length0.60μm

Given,

l=alength of optical fiber 0.60μm

A decibel per metre is a measurement of how loud something is 0.0100 dB/m

The path of a light wave through a waveguide can be estimated as shown in the diagram.

The number of length intervals lin3.0cmis 3.0cm1.648μm=1.820×104

As a result, the light's journey length is h×(1.820×104)=3.19cm

PoweroutPowerin=10-1dB/m10=10-3.19cm0.050dB/m10=0.9649

The power out/power quotient is 0.9649.

03

Determine the wavelength of light inside the waveguide and the frequency

(b)

The wavelength and frequency of light inside the waveguide must be estimated.

The formula below is used to compute the wavelength and frequency.

Wavelength=λ0n

where

λ0=is the wavelength in vacuum

n is the rerfactive index is a measure of how effective a product

Frequency

v=cλ

The wavelength of light inside a waveguide can be estimated using the formula:

Wavelength=λ0n=514nm1.5=343nm

The light inside the waveguide has a wavelength of 343 nm

Frequency

v=cλ

Given,

c=2.9979×108m/sλ=514×10-9mv=2.9979×103m/s514×1014Hzv=5.83×1014Hz

The light frequency inside the waveguide is5.83×1014Hz

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a reflection grating operating with an incident angle of 408 in Figure 20-7. (a) How many lines per centimeter should be etched in the grating if the first-order diffraction angle for 600 nm (visible) light is to be 2308? (b) Answer the same question for 1 000 cm21 (infrared) light.

Results of an electrochemical experiment are shown in the figure. In each case, a voltage is applied between two electrodes at timeand the absorbance of a solution decreases until the voltage is stepped back to its initial value at time. The upper traces show the average results for 100,300, and 1000 repetitions of the experiment. The measured signal-to-rms noise ratio in the upper trace is 60.0. Predict the signal-to-noise ratios expected for 300 cycles, 100 cycles, and 1 cycle and compare your answers with the observed values in the figure.

Find the minimum angleθifor total reflection in the optical fiber in Figure 20-21 if the index of refraction of the cladding is 1.400 and the index of refraction of the core is

(a) 1.600 or

(b) 1.800.

Here is an extremely sensitive method for measuring nitrite () down to in natural waters. The water sample is treated with sulfanilamide and N-(1-naphthylethylenediamine) in acid solution to produce a colored product with a molar absorptivity of 4.5×104M-1cm-1at 540 nm. The colored solution is pumped into a 4.5-meter-long, coiled Teflon tube whose fluorocarbon wall has a refractive index of 1.29. The aqueous solution inside the tube has a refractive index near 1.33. The colored solution is pumped through the coiled tube. An optical fiber delivers white light into one end of the tube, and an optical fiber at the other end leads to a polychromator and detector.

(a) Explain the purpose of the coiled Teflon tube and explain how it functions.

(b) What is the critical angle of incidence for total internal reflection at the Teflon/water interface?

(c) What is the predicted absorbance of a1.0nM solution of colored reagent?

(a) The true absorbance of a sample is 1.500, but 0.50%stray light reaches the detector. Find the apparent transmittance and apparent absorbance of the sample. (b) How much stray light can be tolerated if the absorbance error is not to exceedat a true absorbance of? (c) A research-quality spectrophotometer has a stray light level of <0.00005%,at. What will be the maximum absorbance error for a sample with a true absorbance of 2? Of 3?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free