Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An example of a mixture of 1-mm-diameter particles of \({\rm{KCl}}\)and \({\rm{KN}}{{\rm{O}}_3}\)in a number ratio \(1:99\)follows Equation 28-4. A sample containing \({10^4}\)particles weighs\(11.0\;{\rm{g}}\). What is the expected number and relative standard deviation of \({\rm{KCl}}\)particles in a sample weighing\(11.0 \times {10^2}\;{\rm{g}}\)?

Short Answer

Expert verified

The number of \({\rm{KCl}}\) particles is \({10^4}\) and the relative standard deviation of the \({\rm{KCl}}\) particles is\(99\% \).

Step by step solution

01

Definition of Standard deviation

  • The standard deviation is a measure of how far something deviates from the mean (for example, spread, dispersion, or spread). A "typical" variation from the mean is represented by the standard deviation.
  • Because it returns to the data set's original units of measurement, it's a common measure of variability.
  • The standard deviation, defined as the square root of the variance, is a statistic that represents the dispersion of a dataset relative to its mean.
02

Determine the Standard deviation

First determine the number of particles in \(11 \times {10^2}\;{\rm{g}}\) considering that we know that \(11\;{\rm{g}}\) contains \({10^4}\) particles:

\(11\;{\rm{g}} = {10^4}\)particles

\(\begin{aligned}{}11 \times {10^2} &= \left( {{{10}^4} \times {{10}^2}} \right){\rm{ particles }}\\11 \times {10^2} &= {10^6}{\rm{ particles}}\end{aligned}\)

Next we will calculate the number of \({\rm{KCl}}\) particles:

\(\begin{aligned}{}n({\rm{KCl}}) &= n \times p\\n({\rm{KCl}}) &= {10^6} \times 0.01\\n({\rm{KCl}}) &= {10^4}\end{aligned}\)

Then we will calculate the relative standard deviation by the following equation

\({\rm{ Relative standard deviation }} = \sqrt {npq} /n({\rm{KCl}})\)

Relative standard deviation \( = \sqrt {{{10}^6} \times (0.01) \times 0.99} /{10^4}\)

Relative standard deviation \( = 99\% \)

Therefore, the relative standard deviation of the \({\rm{KCl}}\) particles is\(99\% \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

How many 2.8-g samples must be analyzed to give 95% confidence that the mean is known to within ยฑ4%?

To pre-concentrate cocaine and benzoylecgonine from river water described at the opening of this chapter, solid-phase extraction was carried out at \({\rm{pH}}\,\,2\) using the mixed-mode cation-exchange resin in Figure 28-19. After passing \(500\;{\rm{mL}}\)of river water through \(60{\rm{mg}}\)of resin, the retained analytes were eluted first with \(2\;{\rm{mL}}\)of \({\rm{C}}{{\rm{H}}_3}{\rm{OH}}\)and then with \(2\;\,\,{\rm{mL }}of\,\,\,2\% \) ammonia solution in\({\rm{C}}{{\rm{H}}_3}{\rm{OH}}\). Explain the purpose of using \({\rm{pH}}2\) for retention and dilute ammonia for elution.

Question: Consider a random mixture containing \(4.00\;{\rm{g}}\)of \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\) (density\(2.532g/mL\)) and \(96.00\;{\rm{g}}\)of \({{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}\) (density\(2.428\;{\rm{g}}/{\rm{mL}}\)) with a uniform spherical particle radius of\(0.075\;{\rm{mm}}\).

(a) Calculate the mass of a single particle of \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\) and the number of particles of \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\) in the mixture. Do the same for\({{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}\).

(b) What is the expected number of particles in \(0.100\;{\rm{g}}\)of the mixture?

(c) Calculate the relative sampling standard deviation in the number of particles of each type in a \(0.100\;{\rm{g}}\)sample of the mixture.

The following wet-ashing procedure was used to measure arsenic in organic soil samples by atomic absorption spectroscopy: A 0.1- to \({\bf{0}}.{\bf{5}} - \)g sample was heated in a \({\bf{150}} - {\bf{mL}}\) Teflon bomb in a microwave oven for \(2.5\;{\rm{min}}\) with \(3.5\;{\rm{mL}}\)of\(70\% \,\,\,{\rm{HN}}{{\rm{O}}_3}\). After the sample cooled, a mixture containing \(3.5\;{\rm{mL}}\)of \(70\% \,\,\,{\rm{HN}}{{\rm{O}}_3},1.5\;{\rm{mL}}\) of\(70\% \,\,{\rm{HCl}}{{\rm{O}}_4}\), and \(1.0\;{\rm{mL}}\) of \({{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4}\)was added and the sample was reheated for three \({\bf{2}}.{\bf{5}} - {\bf{min}}\) intervals with 2 -min unheated periods in between. The final solution was diluted with \(0.2{\rm{M}}\,\,\,{\rm{HCl}}\)for analysis. Why was \({\rm{HCl}}{{\rm{O}}_4}\) not introduced until the second heating?

Why is it advantageous to use large particles \(\left( {{\bf{50}}{\rm{ }}\mu {\bf{m}}} \right)\) for solid phase extraction, but small particles \(\left( {{\bf{5}}{\rm{ }}\mu {\bf{m}}} \right)\) for chromatography?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free