Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Consider a random mixture containing \(4.00\;{\rm{g}}\)of \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\) (density\(2.532g/mL\)) and \(96.00\;{\rm{g}}\)of \({{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}\) (density\(2.428\;{\rm{g}}/{\rm{mL}}\)) with a uniform spherical particle radius of\(0.075\;{\rm{mm}}\).

(a) Calculate the mass of a single particle of \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\) and the number of particles of \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\) in the mixture. Do the same for\({{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}\).

(b) What is the expected number of particles in \(0.100\;{\rm{g}}\)of the mixture?

(c) Calculate the relative sampling standard deviation in the number of particles of each type in a \(0.100\;{\rm{g}}\)sample of the mixture.

Short Answer

Expert verified

(a)The mass and the number of particles is,

\((i)\)The mass of the particle in \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\)is \(4.474 \times {10^{ - 6}}\;{\rm{g}}\) and the number of particles is\(8.941 \times {10^5}\).

\((ii)\)The mass of the particle in \({{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}\)is \(4.291 \times {10^{ - 6}}\;{\rm{g}}\) and the number of particles is \(2.237 \times {10^7}\).

(b) The expected number of the particle is \(2.326 \times {10^4}{\rm{ in }}0.1\;{\rm{g}}\)

(c) The relative sampling standard deviation is \(3.28\% \)and \(0.131\% \).

Step by step solution

01

Definition of Standard deviation.

  • The standard deviation is a measure of how far something deviates from the mean (for example, spread, dispersion,). A "typical" variation from the mean is represented by the standard deviation.
  • Because it returns to the data set's original units of measurement, it's a common measure of variability.
  • The standard deviation, defined as the square root of the variance, is a statistic that represents the dispersion of a dataset relative to its mean.
02

Determine the mass of the particle.

a)

First we will calculate the volume with the following:

\(\begin{array}{l}V = \frac{4}{3}\pi {r^3}\\V = \frac{4}{3}\pi {\left( {7.5 \times {{10}^{ - 3}}\;{\rm{cm}}} \right)^3}\\V = 1.767 \times {10^{ - 6}}\;{\rm{mL}}\end{array}\)

Next calculate the mass of particles in\({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\)and \({{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}\) :

The equation used is\(m = \frac{V}{\rho }\)

(1) \(m\left( {{\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}} \right) = \frac{{1.767 \times {{10}^{ - 6}}\;{\rm{mL}}}}{{2.532\;{\rm{g}}/{\rm{mL}}}} = 4.474 \times {10^{ - 6}}\;{\rm{g}}\)

(2)\(m\left( {\;{{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}} \right) = \frac{{1.767 \times {{10}^{ - 6}}\;{\rm{mL}}}}{{2.428\;{\rm{g}}/{\rm{mL}}}} = 4.291 \times {10^{ - 6}}\;{\rm{g}}\)

Then we can calculate the number of particles for each compound

The equation used is\({n_{{\rm{particles }}}} = \frac{{{m_{{\rm{compound }}}}}}{{{m_{{\rm{particles }}}}}}\)

(1)\({n_{{\rm{particles }},1}}\left( {{\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}} \right) = \frac{{4.0\;{\rm{g}}}}{{4.474 \times {{10}^{ - 6}}\;{\rm{g}}}} = 8.941 \times {10^5}\)

(2) \({n_{{\rm{particles }},2}}\left( {\;{{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}} \right) = \frac{{96.0\;{\rm{g}}}}{{4.291 \times {{10}^{ - 6}}\;{\rm{g}}}} = 2.237 \times {10^7}\)

Also, we should calculate the fraction of each compound:

(1)\({f_1} = \frac{{{n_{{\rm{particles, }}1}}}}{{{n_{{\rm{particles }},1}} + {n_{{\rm{particles }},2}}}} = \frac{{8.941 \times {{10}^5}}}{{\left( {8.941 \times {{10}^5}} \right) + \left( {2.237 \times {{10}^7}} \right)}} = 0.0384\)

(2)\({f_2} = \frac{{{n_{{\rm{particles }},1}}}}{{{n_{{\rm{particles }},1}} + {n_{{\rm{particles }},2}}}} = \frac{{2.237 \times {{10}^7}}}{{\left( {8.941 \times {{10}^5}} \right) + \left( {2.237 \times {{10}^7}} \right)}} = 0.962\)

Therefore,

\((i)\)The mass of the particle in \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\)is \(4.474 \times {10^{ - 6}}\;{\rm{g}}\) and the number of particles is \(8.941 \times {10^5}\).

\((ii)\) The mass of the particle in \({{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}\)is \(4.291 \times {10^{ - 6}}\;{\rm{g}}\) and the number of particles is \(2.237 \times {10^7}\).

03

Determine the expected number of particles.

b)

The expected number of particles in\(0.1\;{\rm{g}}\) of the mixture would be:

\(\begin{array}{l}{n_{{\rm{particles }}({\rm{ total }})}} = {n_{{\rm{particles }},1}} + {n_{{\rm{particles }},2}}\\{n_{{\rm{particles(total }})}} = \left( {8.941 \times {{10}^5}} \right) + \left( {2.237 \times {{10}^7}} \right)\\{n_{{\rm{particles(total }})}} = 2.326 \times {10^7}{\rm{ in }}100\;{\rm{g}}\end{array}\)

\(\begin{array}{l}{n_{{\rm{particles(expected }})}} = \frac{{{n_{{\rm{particles }}({\rm{ total }})}}}}{{{{10}^3}}}\\{n_{{\rm{particles }}({\rm{ expected }})}} = \frac{{2.326 \times {{10}^7}}}{{{{10}^3}}}\\{n_{{\rm{particles(expected }})}} = 2.326 \times {10^4}{\rm{ in }}0.1\;{\rm{g}}\end{array}\)

Note that\({10^3}\)is written because \(100/0.1 = 1000 = {10^3}\)

Hence, the expected number of the particle is \(2.326 \times {10^4}{\rm{ in }}0.1\;{\rm{g}}\)

04

Find the relative sampling standard deviation.

c)

Here note that expected number of each particle in\(0.1\;{\rm{g}}\) is \({10^{ - 3}}\) of \({n_{{\rm{particles }},1}}\) and \({n_{{\rm{particles }},2}}\)so the following is:

(1)\({n_{{\rm{particles, }}1}}\left( {{\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}} \right) = 8.941 \times {10^2}\)

(2)\({n_{{\rm{particles, }}2}}\left( {\;{{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}} \right) = 2.237 \times {10^4}\)

First determine the value of sampling standard deviation:

Sampling standard deviation\( = \sqrt {npq} \)

Sampling standard deviation\( = \sqrt {\left( {2.326 \times {{10}^4}} \right)(0.0384)(0.962)} \)

Sampling standard deviation \( = 29.3\)

Next calculate the relative sampling standard deviations:

\({\rm{ (1) RSTD for}}\,{\rm{N}}{{\rm{a}}_2}C{O_3} = \frac{{29.3}}{{8.941 \times {{10}^2}}} = 3.28\% \)

(2) RSTD for\({{\rm{K}}_{\rm{2}}}{\rm{C}}{{\rm{O}}_{\rm{3}}}\)\( = \frac{{29.3}}{{2.237 \times {{10}^4}}} = 0.131\% \)

Therefore, the relative sampling standard deviation is\(3.28\% \)and \(0.131\% \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free