Chapter 28: Q11P (page 790)
Question: Consider a random mixture containing \(4.00\;{\rm{g}}\)of \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\) (density\(2.532g/mL\)) and \(96.00\;{\rm{g}}\)of \({{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}\) (density\(2.428\;{\rm{g}}/{\rm{mL}}\)) with a uniform spherical particle radius of\(0.075\;{\rm{mm}}\).
(a) Calculate the mass of a single particle of \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\) and the number of particles of \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\) in the mixture. Do the same for\({{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}\).
(b) What is the expected number of particles in \(0.100\;{\rm{g}}\)of the mixture?
(c) Calculate the relative sampling standard deviation in the number of particles of each type in a \(0.100\;{\rm{g}}\)sample of the mixture.
Short Answer
(a)The mass and the number of particles is,
\((i)\)The mass of the particle in \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}\)is \(4.474 \times {10^{ - 6}}\;{\rm{g}}\) and the number of particles is\(8.941 \times {10^5}\).
\((ii)\)The mass of the particle in \({{\rm{K}}_2}{\rm{C}}{{\rm{O}}_3}\)is \(4.291 \times {10^{ - 6}}\;{\rm{g}}\) and the number of particles is \(2.237 \times {10^7}\).
(b) The expected number of the particle is \(2.326 \times {10^4}{\rm{ in }}0.1\;{\rm{g}}\)
(c) The relative sampling standard deviation is \(3.28\% \)and \(0.131\% \).