Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write balanced half-reactions in which MnO4-acts as an oxidant at

(a)pH=0;(b)pH=10;(c)pH=15.

Short Answer

Expert verified

The balanced half-reactions are,

(a)MNO4-+8H++5e-mn2+4H2O(b)MnO4-+4H++3e-MnO2(s)+2H2O(c)MnO4-+e-MnO42-

Step by step solution

01

Definition of redox titration

  • Redox reactions are the oxidation-reduction chemical reactions in which the oxidation states of the reactants change. The term redox refers to the reduction-oxidation process.
  • All redox reactions can be divided down into two types of reactions: reduction and oxidation.
  • In a redox reaction, or Oxidation-Reduction process, the oxidation and reduction reactions always happen at the same time.
02

Balanced Half-reactions inMnO4-

a)

At pH = 10, in strongly acidic conditions, KMnO4is reduced to colorless Mn2+:

role="math" localid="1654846415242" MNO4-+8H++5e-Mn2++4H2O

b)

At , pH = 10 in slightly alkaline conditions, is reduced to solid brown MnO2:

role="math" localid="1654846745489" MnO4-+4H++3e-MnO2(s)+2H2O

c)

At , in strongly alkaline conditions, KMnO4is reduced to green Manganate anion

MnO4-+e-MnO42-

is reduced to green Manganate anion

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Potassium bromate,KBrO3is a primary standard for the generation of in acidic solution:

localid="1654933210874" BrO3-+5Br-+6H+3Br2(aq)+3H2O

Thelocalid="1654933214917" Br2can be used to analyze many unsaturated organic compounds.wasanalyzed as follows: An unknown was treated with 8 -hydroxyquinoline (oxine) atpH5to precipitate aluminum oxinate, localid="1654933218452" Al(C9H7ON)3The precipitate was washed, dissolved in warm HCl containing excesslocalid="1654933222732" KBrand treated with 25.00 mLof localid="1654933226652" 0.02000MKBrO3

The excesslocalid="1654933230592" Br2was reduced with Kl, which was converted intolocalid="1654933235658" l3--Thelocalid="1654933239460" l3- required 8.83 mLof localid="1654933242781" 0.05113MNa2S2O3to reach a starch end point. How many milligrams of Al were in the unknown?

Li1+CoO2 is an anode for lithium batteries. Cobalt is present as a mixture of Co (III) and Co (II). Most preparations also contain inert lithium salts and moisture. To find the stoichiometry, Co was measured by atomic absorption and its average oxidation state was measured by a potentiometric tritration.39 For the titration, 25.00mg of solid were dissolved under in 5. mL containing

0.1000MFe2+in 6MH2SO4 plus6MH3PO4to give a clear pink solution:

Co3++Fe2+Co2++Fe3+

Unreacted Fe2+ required 3.228 mL of0.01593MK2Cr2O7 for complete titration.

(a) How many mmol of Co3+ are contained in 25.00mg of the material?

(b) Atomic absorption found 56.4 wt% Co in the solid. What is the average oxidation state of Co ?

(c) Find y in the formulaLi1+CoO2 .

(d) What is the theoretical quotient wt\% Li/wt\% Co in the solid? The observed quotient, after washing away inert lithium salts, was0.1388±0.0006.Is the observed quotient consistent with the average cobalt oxidation state?

The pathogenic bacterium Salmonella enterica uses tetrathionate found in the human gut as an oxidant- just as we useO2to metabolize our food. Write the half-reaction in which tetrathionate serves as an oxidant. Is tetrathionate as powerful an oxidant asO2?

Some people have an allergic reaction to the food preservative sulfite (SO32-), which can be measured by instrumental methods 37 or by a redox titration: To 50.0mL of wine were added 50.0mL of solution containing (0.8043gKIO3+6.0gKI)/100mL . Acidification with 1.0 mL of 6.0MH2SO4 quantitatively converted role="math" localid="1663606948648" lO3 into l3 . The l3 reacted with SO32- to generate role="math" localid="1663607055826" SO42- , leaving excess l3 in solution. The excess l3 required of 12.86mLof0.04818MNa2S2O3to reach a starch end point.

(a) Write the reaction that occurs when H2SO4is added to KIO3+ KI and explain why 6.0 gKI were added to the stock solution. Is it necessary to measure out 6.0 g accurately? Is it necessary to measure 1.0 mL
ofH2SO4 accurately?

(b) Write a balanced reaction betweenl3 and sulfite.

(c) Find the concentration of sulfite in the wine. Express your answer in mol/L and inmgSO32- per liter.

(d) t test. Another wine was found to contain 277.7mgSO32-/Lwith a standard deviation of ±2.2mg/Lfor three determinations by the iodimetric method. A spectrophotometric method gaverole="math" localid="1663607422230" 273.2±2.1mg/L in three determinations. Are these results significantly different at the 95 % confidence level?

(a) Potassium iodate solution was prepared by dissolving 1.022gof KIO3(FM214.00)in a 500 - mLvolumetric flask. Then 50.00mL of the solution were pipetted into a flask and treated with excess KI (2g) and acid (10mLof0.5MH2SO4) ofHow many moles of fl3- are created by the reaction?

(b) The triiodide from part (a) reacted with 37.66 mL of Na2S2O3solution. What is the concentration of the Na2S2O3 solution?

(c) A 1.223-g sample of solid containing ascorbic acid and inert ingredients was dissolved in dilute H2SO4 and treated with 2g of KI and 50.00mL of KIO3solution from part (a). Excess triiodide required14.22 mLofNa2S2O3solution from part (b). Find the weight percent of ascorbic acid (FM 176.13) in the unknown.

(d) Does it matter whether starch indicator is added at the beginning or near the end point in the titration in part (c)?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free