Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chlorate (CIO-3), chlorite (CIO-2), bromate (BrO-3), and iodate (IO-3)can be measured in drinking water at the 1-ppb level with 1% precision by selected reaction monitoring. Chlorate and chlorite arise from CIO2used as a disinfectant. Bromate and iodate can be formed from Br-or I-when water is disinfected with ozone O3. For the highly selective measurement of chlorate, the negative ion selected by Q1 in Figure 22-33 is m/z 83 and the negative ion selected by Q3 is m/z 67. Explain how this measurement works and how it distinguishes CIO3-from CIO2-, BrO3-, andIO3-

Short Answer

Expert verified

The answer is not given in the drive.

Step by step solution

01

Test CIO3-:

Test whetherCIO3-can be distinguished from all three other compound in drinking water, the m/z of all of the compounds should be computed.

CIO2- has m/z of 67 which pass through third quadrupole, it wouldn’t have pass through second quadrupole.

02

further explanation:

When CIO3- passes through the second quadrupole, it undergoes collisionally activated dissociation, breaking into fragments. One of the possible fragments to be formed isCIO2- fragment. The only fragment that would be able to leave the third quadrupole, reaching the detector.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Explain the purpose of the dynamic reaction cell in Figure 21-30. (b) In geologic strontium isotopic analysis, there is isobaric interferencebetween 87Rb+and 87Sr+A dynamic reaction cell with CH3Fconverts Sr+to SrF+but does not convert Rb+to RbF+How does this reaction eliminate interference?

Find the number of rings 1 double bonds in molecules with the following compositions and draw one plausible structure for each: C11H18N2O3(a) (b)C12H15BrNPOS(c) fragment in a mass spectrum with the composition C3H5+.

The molecular ion region in the mass spectrum of a large molecule, such as a protein, consists of a cluster of peaks differing by 1 Da. This pattern occurs because a molecule with many atoms has a high probability of containing one or several atoms of C1315N,18O,2Hand 32S. In fact, the probability of finding a molecule with only C1214N,16O,1Hand 32S may be so small that the nominal molecular ion is not observed. The electrospray mass spectrum of the rat protein interleukin-8 consists of a series of clusters of peaks arising from intact molecular ions with different charge. One cluster has peaks at m/z 1 961.12, 1 961.35, 1 961.63, 1 961.88, 1 962.12 (tallest peak), 1 962.36, 1 962.60, 1 962.87, 1 963.10, 1 963.34, 1 963.59, 1 963.85, and 1 964.09. These peaks correspond to isotopic ions differing by 1 Da. From the observed peak separation, fi nd the charge of the ions in this cluster. From m/z of the tallest peak, estimate the molecular mass of the protein.

Bone consists of the protein collagen and the mineral hydroxyapatite, Ca10(PO4)6(OH)2. The Pb content of archaeological humanskeletons measured by graphite furnace atomic absorption shedslight on customs and economic status of individuals in historicaltimes. 37Explain why La3+ is added to bone samples to suppressmatrix interference in Pbanalysis.

Phytoplankton at the ocean surface maintain the fluidity of their cell membranes by altering their lipid (fat) composition when the temperature changes. When the ocean temperature is high, plankton synthesize relatively more 37:2 than 37:364O37:2=C37H70O(CH2)11(CH2)5CH)13CH3

After they die, plankton sink to the ocean fl oor and end up buried insediment. The deeper we sample a sediment, the further back into time we delve. By measuring the relative quantities of cell-membrane compounds at different depths in the sediment, we can infer the temperature of the ocean long ago. The molecular ion regions of the chemical ionization mass spectra of 37:2 and 37:3 are listed in the table. Predict the expected intensities of M, M11, and M12 for each of the four species listed. Include contributions from C, H, O, and N, as appropriate. Compare your predictions with the observed values. Discrepant intensities in these data are typical unless care is taken to obtain high-quality data.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free