Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Write the meaning of the retention factor, , in terms of time spent by solute in each phase. (b) Write an expression in terms of for the fraction of time spent by a solute molecule in the mobile phase. (c) The retention ratio in chromatography is defined as

R=timeforsolventtimeforsolutetopassthroughcolumn=tmtrShow that is related to the retention factor by the equationR=1/k+1

Short Answer

Expert verified

a)k=tstmb)11+kc)R=11+k

Step by step solution

01

Define Retention Factor:

The retention factor, also known as the capacity factor (k), in column

chromatography is defined as the ratio of time an analyte is retained in the

stationary phase to time

02

To find the retention Factor :

a) To calculate the retention factor as

k=tsoluteinthestationaryphaset(soluteinthemobilephase)k=tr-tmtmk=tstm

tris actually the retention time of solute of interest

03

To find the fraction of time spent in the mobile phase:

b) Fraction of time spent in the mobile phase tmwould be

tmtm+tsk=tstmts=k×tm

Substitute the expression

tmtm+tstmtm+k×tmtmtm+k×tm11+k×111+k

04

To find the retention Factor in chromatography:

c) The retention ration in chromatography is defined as

R=timeforsolventtimeforsolutetopassthroughR=tmtrR=tmtm+tsR=11+k

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The antitumor drug gimatecan is available as nearly pure (S)-enantiomer. Neither pure (R)-enantiomer nor a racemic (equal) mixture of the two enantiomers is available. To measure small quantities of (R)-enantiomer in nearly pure (S)-gimatecan, a preparation was subjected to normal-phase chromatography on each of the enantiomers of a commercial, chiral stationary phase designated (S,S)- and (R,R)-DACH-DNB. Chromatography on the (R,R)-stationary phase gave a slightly asymmetric peak at tr 5 6.10 min with retention factor k 5 1.22. Chromatography on the (S,S)- stationary phase gave a slightly asymmetric peak at tr 5 6.96 min with k 5 1.50. With the (S,S) stationary phase, a small peak with 0.03% of the area of the main peak was observed at 6.10 min.

Chromatography of gimatecan on each enantiomer of a chiral stationary phase. Lower traces have enlarged vertical scale. [Data from E. Badaloni, W. Cabri, A. Ciogli, R. Deias, F. Gasparrini, F. Giorgi, A. Vigevani, and C. Villani, “Combination of HPLC ‘Inverted Chirality Columns Approach’ and MS/MS Detection for Extreme Enantiomeric Excess Determination Even in Absence of Reference Samples.” Anal. Chem. 2007, 79, 6013.]

(a) Explain the appearance of the upper chromatograms. Dashed lines are position markers, not part of the chromatogram. What Problems 709 would the chromatogram of pure (R)-gimatecan look like on the same two stationary phases?

(b) Explain the appearance of the two lower chromatograms and why it can be concluded that the gimatecan contained 0.03% of the (R)-enantiomer. Why is the (R)-enantiomer not observed with the (R,R)-stationary phase?

(c) Find the relative retention (a) for the two enantiomers on the (S,S)-stationary phase.

(d) The column provides N 5 6 800 plates. What would be the resolution between the two equal peaks in a racemic (equal) mixture of (R)- and (S)-gimatecan? If the peaks were symmetric, does this resolution provide baseline separation in which signal returns to baseline before the next peak begins?

Retention time depends on temperature, T, according to the equation log t’r =(a/T) + b, where a and b are constants for a specific compound on a specific column. A compound is eluted from a gas chromatography column at an adjusted retention time t’r =15.0 min when the column temperature is 373K. At 363 K, t9r 5 20.0 min. Find the parameters a and b and predict t’r at 353K

(a) What are the characteristics of an ideal carrier gas?

(b) Why do H2 and He allow more rapid linear velocities in gas chromatography thanN2 does, without loss of column efficiency (Figure 24-11)?

Describe how retention time of butanol on a poly (ethylene glycol) column will change with increasing temperature. Use the retention time for butanol in Figure 24-9b as the starting point.

(a) How can you improve the resolution between two closely spaced peaks in gas chromatography?

(b) What approach from (a) would be most cost effective (not involve a purchase)?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free