Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the difference between a fluorescence excitation spectrum and a fluorescence emission spectrum? Which one resembles an absorption spectrum?

Short Answer

Expert verified

The fluorescence excitation spectrum resembles an absorption spectrum.

Step by step solution

01

Differentiation:

The difference between a fluorescence excitation spectrum and a fluorescence emission spectrum is that in fluorescence excitation theλexis different, while theλemis constant In fluorescence emission it is the opposite

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Gold nanoparticles (Figure 17-31) can be titrated with the oxidizing agent TCNQ in the presence of excess ofBr2-to oxidize Au(0)"toAuBr2-in deaerated toluene. Gold atoms in the interior of the particle are Au(0) . Gold atoms bound to C12H25S- (dodecanethiol) ligands on the surface of the particle are Au(I) and are not titrated.

The table gives the absorbance at $856 0.700 mL of 1.00×10-4MTCNQ+0.05M(C8H17)4N+Br-in toluene is titrated with gold nanoparticles (1.43 g/Lin toluene) from a microsyringe with a Teflon-coated needle. Absorbance in the table has already been corrected for dilution.

(a) Make a graph of absorbance versus volume of titrant and estimate the equivalence point. Calculate the Au(0) in 1.00 g of nanoparticles.

(b) From other analyses of similarly prepared nanoparticles, it is estimated that 25 % of the mass of the particle is dodecanethiol ligand. Calculate mmol of localid="1667559229564" C12H25Sin 1.00 g of nanoparticles.

(c) The Au(I) content of 1.00 g of nanoparticles should be 1.00 mass of Au(0) - mass of C12H25S. Calculate the micromoles of Au(I) in 1.00 g of nanoparticles and the mole ratio Au(I) :. In principle, this ratio should be 1: 1. The difference is most likely because C12H25Swas not measured for this specific nanoparticle preparation.

18-27. The iron-binding site of transferrin in Figure 18-8 can accommodate certain other metal ions besides Fe and certain other anions besidesData are given in the table for the titration of transferrin ( 3.57 mg in 2.00 mL ) with 6.64 mM Ga3+solution in the presence of the anion oxalate, C2O42-, and in the absence of a suitable anion. Prepare a graph similar to Figure 18-11, showing both sets of data. Indicate the theoretical equivalence point for the binding of one and two Ga3+ions per molecule of protein and the observed end point. How many Ga3+ions are bound to transferrin in the presence and in the absence of oxalate?

18-8: What is an absorption spectrum?

18-29. Biotin-streptavidin fluorescence titration. Biotin is a cofactor in enzymatic carboxylation reactions. Biotin activatesCO2for biosynthetic reactions.


Streptavidin is a protein isolated from the bacterium Streptomyces avidinii that binds biotin with a formation constant of ~1014M-1. The biotin-streptavidin complex is widely used in biotechnology because the noncovalent complex is stable in the presence of detergents, protein denaturants, and organic solvents, and at extremes of pH and temperature.

The stoichiometry of the biotin-streptavidin complex was measured by a fluorescence titration. Fluorescein (page 453 ) covalently attached to biotin via the biotin carboxyl group fluoresces at 520 nm when irradiated at 493 nm. When biotin-fluorescein (BF) binds to streptavidin (SA), fluorescence decreases. The table gives emission intensity for addition of BF to SA and also for addition of SA to BF. Data are already corrected for dilution.

(a) Make a graph of fluorescence versus mole ratio for each titration and state the stoichiometry of binding of biotin to streptavidin.

(b) Explain the shape of each titration curve.

18-7: How do transmittance, absorbance, and molar absorptivity differ? Which one is proportional to concentration?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free