Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) At what cathode potential will Sb(s)deposition commence from 0.010MSbO+solution at pH 0.00? Express this potential versus S.H.E. and versusAg|AgCI. (Disregard overpotential, about which you have no information.)

SbO++2H++3e-Sb(s)+H2OE°=0.208V

(b) What percentage of0.10MCu2+could be reduced electrolytically to Cu(s)before0.010MSbO+in the same solution begins to be reduced at pH 0.00?

Short Answer

Expert verified
  1. The cathode potential at which deposition will happen from SbO+is 0.208V .
  2. The percentage of Cu2+ion gets converted into copper is 99.998%.

Step by step solution

01

Concept used.

The voltage of a cell when the electric current is too small,

E=E(cathode)-E(anode)

E is the electrode's potential that is connected to the current source's negative terminal.

The electrode's potential is E(anode), which is connected to the positive terminal of the current source.

Overpotential: Voltage can override the activation energy of a process at an electrode, resulting in overpotential. Overpotential is the needed voltage to apply.

Ohmic potential: In an electrochemical cell, voltage can overcome the electrical resistance of a solution while currentflows. The ohmic potential is the voltage that must be applied.

Eohmic=IR

Concentration Polarization: Polarization is defined as a change in product and reactant concentrations at the electrode's surface, although they are the same in solution.

02

Step 2: The cathode potential at which Sb deposition SbO+ from will occur.

a)

The value of E (cathode)

=0.208-0.059162log1SbO+|HH+2=0.208-0.059162log10.0101.02=0.169V

Now,

03

The percentage of 0.10MCu2+ could be reduced electrolytically to Cu(s) before 0.010MSbO+ in the same solution begins to be reduced at pH 0.00.

b)

At 0.169V , the concentration of copper ion equilibrium with copper is calculated as followsCu2++2e-CusE°=0.339

Ecathode=0.339-0.059162log1Cu2+0.169=0.339-0.059162log1Cu2+Cu2+1=1.8×10-6M

The percentage of copper ions that have not been reduced is calculated as

=1.8×1060.10×100=1.8×10-3%

The percentage of reduced copper ion is 99.998%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

How many hours are required for 0.100 mol of electrons to flow through a circuit if the current is 1.00 A?

What is the purpose of the Nafion the membrane in Figure 17-33

(a) which voltage,V1orV2in the diagram is constant in controlled-potential electrolysis? Which are the working, auxiliary, and reference electrodes in the diagram?

(b) Explain how the Luggin capillary in Figure 17-4 measures the electric potential at the opening of the capillary.

A monolayer (single layer of atoms) of Cuon the (100) crystal face shown in the margin has1.53×1015atoms/cm2=2.54×10-9mol/cm2. What current can deposit one layer of Cuatoms on1cm2in 1 s?

Coulometric titration of sulfite in wine. Sulfur dioxide is added to many foods as a preservative. In aqueous solution, the following species are in equilibrium:

Bisulfite reacts with aldehydes in food near neutral pH:


Sulfite is released from the adduct in 2MNaOH and can be analyzed by its reaction with I3- to give I-and sulfate. ExcessI3- must be present for quantitative reaction.

Here is a coulometric procedure for analysis of total sulfite in white wine. Total sulfite means all species in Reaction and the adduct in Reaction . We use white wine so that we can see the color of a starch-iodine end point.

1. Mix 9.00 mL of wine plus 0.8gNaOH and dilute to 10.00mL. The releases sulfite from its organic adducts.

2. Generate I3-at the working electrode (the anode) by passing a known current for a known time through the cell in Figure 17 - 10. The cell containsofacetate buffer () plus. In the cathode compartment, is reduced to H2+OH-. The frit retards diffusion of into the main compartment, where it would react with I3- to giveIO-.

3. Generate I3- at the anode with a current of for.

4. Inject 2.000mL of the wine/ solution into the cell, where the sulfite reacts with leaving excess.

5. Add of thiosulfate to consume by Reaction and leave excess thiosulfate.

6. Add starch indicator to the cell and generate freshI3- with a constant current of 10.0mA. A time of 131s was required to consume excess thiosulfate and reach the starch end point.

(a) In what pH range is each form of sulfurous acid predominant?

(b) Write balanced half-reactions for the anode and cathode.

(c) At pH 3.7, the dominant form of sulfurous acid isand the dominant form of sulfuric acid is HSO42-. Write balanced reactions between andand between I3-and HSO3-thiosulfate.

(d) Find the concentration of total sulfite in undiluted wine.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free