Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Explain how the endpoint is detected in a Karl Fischer titration in Figure 17-35.

Short Answer

Expert verified

The process of detection of endpoint in Karl Fischer titration.

Step by step solution

01

Define Karl Fischer titration

The Karl Fischer titration, which measures traces of water in transformer oil, solvents, foods, polymers, and other substances, might be performed half a million times each day. The titration is usually performed by delivering titrant from an automated burette or by coulometric generation of titrant. The volumetric procedure tends to be appropriate for larger amounts of water (but can go as low as ~1mgH2O), and the coulometric procedure tends to be appropriate for smaller amounts of water.

02

Determine the Process End point in Karl Fischer titration

The anode solution (base, alcohol, SO2,I-) is poured in main section in above figure and cathodic solution which has reagents to be reduced at cathode is poured in coulometric generator. Current is passed till the end point. An unknown solution is passed via septum and the moisture consumption is monitored by coulometer. When the ratio of water and iodine is 1: 1, then 2 moles of e-corresponds to one mole of water ROH+SO2+BBH++ROSO2-.

H2O+I2+ROSO2-+2B2BH+I-

lodine molecule is generated on oxidizing in anode compartment. Then Iodine molecule oxidizes SO2to form ROSO3-. One mole of iodine molecule is required to consume one mole of water.

03

Determine the End point in Karl Fischer titration

  • A constant current of 5 or10μAis maintained between detector electrode and measures the voltages.
    • Before reaching equivalence point the solution has an iodide ion with athe trace of iodine molecule.
    • The cathode potential should be negative to reduce species in the solvent system and to sustain the current of10μA
    • When the equivalence point is reached, excessive iodine molecule forms, and current at lower voltage is maintained by the following reaction
  • Cathode: I3-+2e-3I-
  • Anode:3I-I3-+2e-

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The chlor-alkali process 54in which seawater is electrolyzed to make CI2 andNaOH, is the second most important commercial electrolysis, behindAIproduction.

Anode: CI-12CI2+e-

HgCathode:Na++H2O+e-NaOH+12H2

The Nafion membrane (page 421) used to separate the anode and cathode compartments resists chemical attack. Its anionic side chains permit conduction ofNa+ , but not anions. The cathode compartment contains pure water, and the anode compartment contains seawater from which Ca2+ and Mg2+ have been removed. Explain how the membrane allows NaOH to be formed free ofNaCI.

Will(cathode) =0.19 Vreduce 0.10MSbO+at pH 2 by the reactionSbO++2H++3e-Sb(s)+H2O,E°=0.208V?

Chemical oxygen demand by coulonetry. An electrochemical device incorporating photooxidation on a \({\rm{Ti}}{{\rm{O}}_2}\) surface could replace refluxing with \({{\rm{C}}_2}{\rm{O}}_7^{2 - }\) to measure chemical oxygen demand (Box 16-2). The diagram shows a working electrode beld at \( + 0.30\;{\rm{V}}\) versus \({\rm{Ag}}\mid {\rm{AgCl}}\) and coated with nanoparticles of 'TiO . Wltraviolet2inradiation generates electrons and holes in \({{\rm{T}}_1}{{\rm{O}}_2}\). Holes oxidize

organic matter at the surface. Electrons reduce \({{\rm{H}}_2}{\rm{O}}\) at the auxiliary electrode in a compartment connected to the working compartment by a salt bridge. The sample compartment is only 0.18 mm thick with a volume of \(13.5\mu \,{\rm{L}}\). It requires \(\~1\;\,{\rm{min}}\) for all organic matter to diffuse to the \({\rm{Ti}}{{\rm{O}}_2}\) surface and be exhaustively oxidized.

Left: Working electrode. Fight Photocument response for sample and blank Both solutions contain \(2{\rm{M}}\,{\rm{NaNO}}\). (Dst from H zhso, D. fisng. 5 . zhang K. Cutteral, and R. Jshn, "Development of a Drect Fhotselectrocherrical Method for Deterrination of Gherrical Ouygen Demand," And. Chan. 2004, 76 155.)

The blank curve in the graph shows the response when the sample compartment contains just electrolyte. Before inradiation, no current is observed. Ultraviolet radiation causes a spike in the current, followed by a decrease to a steady level near \(40\mu \). This current arises from oxidation of water at the \({\rm{Ti}}{{\rm{O}}_2}\)sufface under ultraviolet exposure. The upper curve sbows the same experiment, but with wastewater in the sample compartment. The increased current arises from oxidation of organic matter. When the organic matter is consumed, the cument decreases to the blank level. The area between the two curves tells us how many electrons flow from oxidation of organic matter in the sample.

  1. Balance the oxidation half-reaction that occurs in this cell:

\({{\rm{C}}_e}{{\rm{H}}_k}{{\rm{O}}_a}\;{{\rm{N}}_s}{{\rm{X}}_x} + {\rm{A}}{{\rm{H}}_2}{\rm{O}} \to {\rm{BC}}{{\rm{O}}_2} + {\rm{CX}} + {\rm{DN}}{{\rm{H}}_3} + {\rm{E}}{{\rm{H}}^ + } + {\rm{F}}{{\rm{e}}^ - }\)

where X is any halogen. Express the stoichiometry coefficients A, B, C, D, E, and F in terms of c, h, o, n, and x.

  1. How many molecules of \({{\rm{O}}_2}\)are required to balance the halfreaction in part (a) by reduction of oxygen (\({{\rm{O}}_2} + 4{{\rm{H}}^ + } + 4{{\rm{e}}^ - } \to 2{{\rm{H}}_2}{\rm{O}}\))?
  2. The area between the two curves in the graph is \(\int_0^\infty {({I_{{\rm{sample }}}}} - {I_{blank}})dt = 9.43\,{\rm{mC}}{\rm{.}}\) This is the number of electrons liberated by complete oxidation of the sample. How many moles of \({{\rm{O}}_2}\) would be required for the same oxidation?
  3. Chemical oxygen demand (COD) is expressed as mg of \({{\rm{O}}_2}\) required to oxidize 1 L of sample. Find the COD for this sample.
  4. If the only caidizable substance in the sample were \({{\rm{C}}_9}{{\rm{H}}_6}{\rm{N}}{{\rm{O}}_2}{\rm{CIB}}{{\rm{r}}_2}\). what is its concentration in molL?

Ti3+ is to be generated in 0.10MHClO4 for coulometric reduction of azobenzene.

TiO2++2H++eTi3++H2OE0=0.100V4Ti3++C6H5N=NC6H5+4H2O2C6H5NH2+4TiO2++4H+

At the counter electrode, water is oxidized, and \(\mathrm{O}_{2}\) is liberated at a pressure of \(0.20\) bar. Both electrodes are made of smooth Pt, and each has a total surface area of 1.00cm2. The rate of reduction of the azobenzene is 25.9nmol/s , and the resistance of the solution between the generator electrodes is 52.4Ω.

  1. Calculate the current density (A/m2)at the electrode surface. Use Table 17-1 to estimate the overpotential for O2liberation.
  2. Calculate the cathode potential (versus S.H.E.) assuming that role="math" localid="1668356673323" [TiO2+surface]=[TiO2+]bulk=0.050Mand [Ti3+]surface=0.10M.
  3. Calculate the anode potential (versus S.H.E.).
  4. What should the applied voltage be?

Explain what is done in anodic stripping voltammetry. Why is stripping the most sensitive voltammetric technique?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free