Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The figure shows the behavior of Ptand Ag cathodes at whichreduction ofH3O+toH2(g)occurs. Explain why the two curves arenot superimposed.

Current versus voltage forPtand Agelectrodes in O2 -free, aqueous H2SO4

Adjusted topH3.2.

Short Answer

Expert verified

The voltage of Ag(0.4751V) required to overcome the activation energy for a reaction at an electrode is higher than of Pt(0.0154V) electrode.

Step by step solution

01

Define Electrochemical cell:

  • Since oxidation always occurs at the cathode in an electrochemical cell, reduction occurs there.
02

To discern the graph:

  • According to the graph, and table 17-1, we can see that for reduction of H3O+ to H2 Ag electrode needs 0.5V more negative potential than the Pt electrode.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For a rotating disk electrode operating at sufficiently great potential, the redox reaction rate is governed by the rate at which analyte diffuses through the diffusion layer to the electrode (Figure 17-15b). The thickness of the diffusion layer is

δ=1.61D1/3V1/6ω-1/2

whereis the diffusion coefficient of reactant (m2/s),vis the kinematic viscosity of the liquid

(=viscosity/debsity=(m2/s),v and ωis the rotation rate (radians/s) of the electrode. There are 2π radians in a circle. The current densityis localid="1655441451764" (A/m2)is

localid="1655441445229" Currentdebsity=0.62nFD2/3v-1/6ω1/2C0

where nis the number of electrons in the half-reaction, Fis the Faraday constant, and localid="1655441459070" C0is the concentration of the electroactive species in bulk solution localid="1655441466748" (mol/m3,notmol/L) Consider the oxidation oflocalid="1655441474339" Fe(CN)64-in a solution of localid="1655441479067" 10.0mMK3Fe(CN)6+50.0mMK4Fe(CN)6at +0.90V(versus S.C.E.) at a rotation speed oflocalid="1655441490849" role="math" 2.00×103revolutions per minute. 27The diffusion coefficient oflocalid="1655441497131" Fe(CN)64-is2.5×10-9m2/sand the kinematic viscosity islocalid="1655441503345" 1.1×10-5m2/sCalculate the thickness of the diffusion layer and the current density. If you are careful, the current density should look like the value in Figure 17-16b.

Suppose we wish to electrolyze I-to I3-in a 0.10M Klsolution containing 3.0×10-5MI3-at pH 10.00with PH2=1.00bar.

3I-+2H2OI3-+H2(g)+2OH-

(a) Find the cell voltage if no current is flowing.

(b) Then suppose that electrolysis increases [I3-]to3.0×10-4M, but other concentrations are unaffected. Suppose that the cell resistance is2.0Ω, the current is 63 mA, the cathode overpotential is 0.382V, and the anode overpotential is 0.025 V. What voltage is needed to drive the reaction?

Find the voltage in part (b) ifrole="math" localid="1663645169401" [I-]s=0.01M.

In a coulometric Karl Fischer water analysis, 25.00 mL of pure "dry" methanol required 4.23 C to generate enough I2 to react with residual H2O in the methanol. A suspension of 0.8476 g of finely ground polymeric material in 25.00 mL of the same "dry" methanol required 63.16 C. Find the wt %H2O in the polymer.

17-17. The experiment in Figure 17 - 9 required 5.32mA for 864s for complete reaction of a5.00 - mLaliquot of unknown cyclohexene solution.

(a) How many moles of electrons passed through the cell?

(b) How many moles of cyclohexene reacted?

(c) What was the molarity of cyclohexene in the unknown?

Electroplating efficiency. 56Nickel was electrolytically plated onto a carbon electrode from a bath containing290g/LNiSO4.6H2O,30g/LB(OH)3androle="math" localid="1654763379590" 8g/LNaClat-1.2VvsAgAgClThe most important side reaction is reduction ofH+toH2.In one experiment, a carbon electrode weighing0.4775gbefore deposition weighedrole="math" localid="1654763622546" 0.4798gafter8.82Chad passed through the circuit. What percentage of the current went into the reactionNi2+2e-Ni(s)?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free