Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The sulfur content of insoluble sulfides that do not readily dissolve in acid can be measured by oxidation with Br2 to .25 Metal ions are then replaced with H+ by an ion-exchange column, and sulfate is precipitated as BaSO4 with a known excess of BaCl2. The excess Ba2+ is then titrated with EDTA to determine how much was present. (To make the indicator end point clearer, a small, known quantity of Zn2+ also is added. The EDTA titrates both the Ba2+ and the Zn2+.) Knowing the excess Ba2+, we can calculate how much sulfur was in the original material. To analyze the mineral sphalerite (ZnS, FM 97.46), 5.89 mg of powdered solid were suspended in a mixture of CCl4 and H2O containing 1.5 mmol Br2. After 1 h at 200 C and 2 h at 500 C, the powder dissolved and the solvent and excess Br2 were removed by heating. The residue was dissolved in 3 mL of water and passed through an ion-exchange column to replace Zn2+ with H+. Then 5.000 mL of 0.014 63 M BaCl2 were added to precipitate all sulfate as BaSO4. After the addition of 1.000 mL of 0.010 00 M ZnCl2 and 3 mL of ammonia buffer, pH 10, the excess Ba2+ and Zn2+ required 2.39 mL of 0.009 63 M EDTA to reach the Calmagite end point. Find the weight percent of sulfur in the sphalerite. What is the theoretical value?

Short Answer

Expert verified

The weight percent of sulfur in sphalerite is 32.76%. The theoretical weight percent of sulfur in pure ZnS will be 33.6%

Step by step solution

01

Given Information

The sulfur content of insoluble sulfides generally measured by oxidation with Br2 to SO42-. An ion exchange column must be used to replace metal ions with H+. After precipitation of sulfate as BaSO4, the excess Ba2+ ion is titrated with EDTA.

Amount of powdered solid taken = 5.89 mg

Amount of BaCl2 added for precipitation of BaSO4 = 5.0 mL of 0.01463 M BaCl2

Amount of ZnCl2 added = 1.0 mL of 0.01M ZnCl2

Amount of ammonia(pH=10) added = 3 mL

EDTA required to attain Calmagite end point =0.00963 M

02

Determine the amount of sulfur present

Total amount of standard Ba2+ and Zn2+ added to sulfate solution

=(5mL)(0.01463BaCl2)+(1mL)(0.01ZnCl2)=0.0832mmol

Amount of EDTA required for titration of excess Ba2+ ion

=(2.39mL)(0.00963M)=0.023mmol

Therefore, the original amount of sulfur in the solid

=(0.0832-0.023)mmol=0.0602mmol

Molecular weight of sulfur = 32.066 mg/mmol

Therefore, mass of sulfur

=(0.0602mmol)(32.066mg/mmol)=1.93mg

03

Determine the theoretical value of sulfur present

Weight percentage of sulfur in the solid (spharelite) taken

=1.93mg5.89mg×100=32.76%

Theoretical weight percent of sulfur in pure ZnS

=32.76gS97.46gZnS=33.6%

Therefore, theoretical weight percent of sulfur in pure ZnS will be 33.6%

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Pyrocatechol violet(Table 12-3) is to be used as a metal ion indicator in an EDTA titration. The procedure is as follows:

1. Add a known excess of EDTA to the unknown metal ion.

2. Adjust the pH with a suitable buffer.

3. Back-titrate the excess chelate with standard Al3+.

From the following available buffers, select the best buffer, and then state what color change will be observed at the end point. Explain your answer.

  1. pH 6–7 (ii) pH 7–8 (iii) pH 8–9 (iv) pH 9–10

Calculate pCu2+ at each of the following points in the titration of 50.00 mL of 0.001 00 M Cu2+ with 0.00100 M EDTA at pH 11.00 in a solution with [NH3] fixed at 1.00 M:

(a) 0 mL(b) 1.00 mL (c) 45.00 mL (d) 50.00 mL (e) 55.00 mL

State the purpose of an auxiliary complexing agent and give an example of its use.

Spreadsheet equation for auxiliary complexing agent. Consider the titration of metal M (initial concentration = CM, initial volume = VM) with EDTA (concentration = CEDTA, volume added = VEDTA) in the presence of an auxiliary complexing ligand (such as ammonia). Follow the derivation in Section 12-4 to show that the master equation for the titration is

ϕ=CEDTAVEDTACMVM=1+Kf′′[M]free[M]free+Kf′′[M]freeCMKf′′[M]free+[M]free+Kf′′[M]free2CEDTA

where Kf''is the conditional formation constant in the presence of auxiliary complexing agent at the fixed pH of the titration (Equation 12-18) and [M]free is the total concentration of metal not bound to EDTA. [M]free is the same as [M] in Equation 12-15. The result is equivalent to Equation 12-11, with [M] replaced by [M]free andKfreplaced by Kf''.

Calculate pCu2+ at each of the following points in the titration of 50.00 mL of 0.001 00 M Cu2+ with 0.00100 M EDTA at pH 11.00 in a solution with [NH3] fixed at 1.00 M:

(a) 0 mL(b) 1.00 mL (c) 45.00 mL (d) 50.00 mL (e) 55.00 mL

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free