Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The protein bovine serum albumin can bind several molecules of the dye methyl orange. To measure the binding constant K for one dye molecule, solutions were prepared with a fixed concentration (x0)of dye and a larger, variable concentration of protein (P). The equilibrium is Reaction 19-18, with X 5 methyl

orange.

Experimental data are shown in cells A16-D20 in the spreadsheet on the next page. The authors report the increase in absorbanceAat 490 nm as P is added to X. X and PX absorb visible light, but P does not. Equilibrium expression 19-20 applies and [PX] is given by Equation 19-21. Before P is added, the absorbance is. The increase in absorbance when P is added is

The spreadsheet uses Solver to vary K and Ein cells B10:B11 to minimize the sum of squares of differences between observed and calculatedin solutions with different amounts of P. Cell E16 computes [PX] from Equation 19-21, which is Equation A on line 6 of the spreadsheet. Cells F16 and G16 find [X] and [P] from mass balances. Cell H16 computes ΔAcalc=ΔE[PX]which is Equation B on line 7.

To estimate a value of K in cell B10, suppose that 50% of X has reacted in row 20 of the spreadsheet. The total concentration of X is. If half is reacted, then[X]=[PX]=2.85μMand[P]=P0[PX]=40.42.85=37.55μMThe binding

constant is K=[PX]P][X])=[2.85μM]37.55μM][2.85μM])=2.7×104which we enter as our guess for K in cell B10. We estimatein cell B11 by supposing that 50% of X has reacted in row 20. In Equation B on line 7, ΔA=Δε[PX].The measured

value ofin row 20 is 0.0291 and we just estimated that. Therefore, our guess for localid="1668328314124" Δεin cellB11isΔε=ΔA/[PX]=(0.0291)(2.85μM)=1.0×104in cell B11 is

Your assignment is to write formulas in columns E through J of the spreadsheet to reproduce what is shown and to find values in cells E17:J20. Then use Solver to find K andin cells B10:B11 to minimizeΣAothsAcalc2in cell I21.

Short Answer

Expert verified

The value ofε and K which is in cell B10:B11 will minimize ΣAothsAcalc2in cell I21. We get the spreadsheet as,

Step by step solution

01

Find K:

The value ofε and K which is in cell B10:B11 will minimize ΣAothsAcalc2in cell I21. We get the spreadsheet as,

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Chemical equilibrium and analysis of a mixture. (Warning! This is a long problem.) A remote optical sensor for CO2in the ocean was designed to operate without the need for calibration.33


The sensor compartment is separated from seawater by a silicone membrane through which CO2, but not dissolved ions, can diffuse. Inside the sensor, CO2equilibrates with HCO3and CO32. For each

measurement, the sensor is flushed with fresh solution containingbromothymol blue indicator. All indicator is in the formnear neutral pH, so we can

write two mass balances:

[HIn]+[ln2]=FIn=50.0μMand[Na+]=F=50.0μM+42.0μM=92.0μM

has an absorbance maximum at 434 nm andhas a maximum at 620 nm. The sensor measures the absorbance ratio RA=A620/A434reproducibly without need for calibration. From this ratio, we can findin the seawater as outlined here:

(a).From Beer’s law for the mixture, write equations forin terms of the absorbance at 620 and 434 nmThen show that

[ln2][Hln]=RAε434HHnε6,20Hlnε620ln2RAε434ln2=Rln (A)

(b) From the mass balance (1) and the acid dissociation constant

, show that

[Hln]=F1nRln+1 (B)

[ln2]=KlnFln[H+](Rln+1) (C)

(c) Show that H+=Kln/Rln (D)

(d) From the carbonic acid dissociation equilibria, show that

[HCO3]=K1[CO(aq)]E[H+][CO32]=K1K2[CO(aq)]F[H+]2

(e) Write the charge balance for the solution in the sensor compartment. Substitute in expressions B, C, E, and F forHln,In2-,[HCO3], and[CO32]

(f) Suppose that the various constants have the following values:

ε4344HHn=8.00×103M1cm1    K1=3.0×107ε6620Hn=0    K2=3.3×1011ε434ln2=1.90×103M1cm1    Kln=2.0×107ε620ln2=1.70×104M1cm1    Kw=6.7×1015

From the measured absorbance ratio=2.84, findin the seawater.

(g) Approximately what is the ionic strength inside the sensor compartment? Were we justified in neglecting activity coefficients in working this problem?

When are isosbestic points observed and why?

The spreadsheet lists molar absorptivities of three dyes and the absorbance of a mixture of the dyes in a 1.000-cm cell. Use the least-squares procedure in Figure 19-3 to find the concentration of each dye in the mixture.

Now we use Solver to find Kfor the previous problem. The only absorbing species at 332 nmis the complex, so, from Beer’s law [complex]=A/ε(becausepathlength=1.000cm).I2is either free or bound in the complex,so [I2]=[I2]tot-[complex].There is a huge excess of mesitylene, so[mesitylene][mesitylene]tot

K=[complex][l2][mesitylene]=A/ε(l2tot-A/ε)[mestitylene]tot

The spreadsheet shows some of the data. You will need to use all the data. Column A contains [mesitylene] and column B contains [l2]tot. Column C lists the measured absorbance. Guessa value of the molar absorptivity of the complex,ε,incellA7.Then compute the concentration of the complex (=A/ε)in column D. The equilibrium constant in column EisgivenbyE2=[complex]/([I2][mesitylene])=(D2)/((B2-D2)*A2).

should we minimize with Solver? We want to varyεin cell A7 until the values of Kin column E are as constant as possible. We would like to minimize a function like (Ki-Kaverage)2, where Kiis the value in each line of the table and Kaverage is the average of all computed values. The problem with (Ki-Kaverage)2is that we can minimize this function simply by making Kivery small, but not necessarily constant. What we really want is for all the Kito be clustered around the mean value. A good way to do this is to minimize the relative standard deviationof the K, which is (standard deviation)/average. In cell E5we compute the average value of Kand in cell E6the standard deviation. Cell E7contains the relative standard deviation. Use Solver to minimize cell E7by varying cell A7. Compare your answer with that of Problem 19-13.

Figure 19-6 is a Scatchard plot for the addition of 0-20nM antigen X to a fixed concentration of antibodyP=(Po=10nM)Prepare a Scatchard plot from the data in the table and find K for the reactionP+XPX. The table gives measured concentrations of unbound X and the complex PX. It is recommended that the fraction of saturation should span the range ,-0.2-0.8. What is the range of the fraction of saturation for the data?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free