Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 2: Rate constant of reaction (page 36)

At 600 K, the rate constant for the first-order decomposition of nitroethane

is 1.9 × 10-4s-1 .

CH3CH2NO2C2H4+HNO2

A sample of CH3CH2NO2 is heated to 600 K, at which point its initial partial pressure is measured to be 0.078 atm. Calculate its partial pressure after 3.0 hours.

Short Answer

Expert verified

The partial pressure is 0.010 atm after 3 hours.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Calculate time for given reaction

Rate law of the reaction when partial pressure is given by the following expression

2.303logPtP0=-kt.......1

Here P0 is the initial pressure, Pt is the final pressure, k is the rate constant and t is the time taken.

Convert time in hours to seconds

localid="1660231583743" role="math" t=3.0hourst=3.0hours×60minutes1hour×60seaconds1mint=10800s

The total time is t =10800s

02

Calculation of final pressure Pt

Substituting below the values in equation 1,

T=600KPi=0.078atmt=10800s

The following equation is obtained

2.303logPt0.078=-1.9×10-410800slogpt-log0.0078=-1.9×10-410800s2.303logpt+1.11=-0.891logpt=-2.00pt=10-2.00pt=0.010

Therefore the partial pressure after 3.0 hours will be 0.010 atm

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter


Nitrogen oxide reacts with hydrogen at elevated temperatures according to the following chemical equation:

2NO(g)+2H2gN2(g)+2H2O

It is observed that, when the concentration of H2 is cut in half, the rate of the reaction is also cut in half. When the concentration of NO is multiplied by 10, the rate of the reaction increases by a factor of 100

. (a) Write the rate expression for this reaction, and give the units of the rate constant k.

(b) If [NO] were multiplied by 3 and [H2] by 2, what change in the rate would be observed?

Question: Calculate the total binding energy, in both kJ per mole and MeV per atom, and the binding energy per nucleon of the following nuclides using the data from Table 19.1.

  1. Ca4020
  2. Rb3787
  3. U92238

Calculate the relative populations of two quantum states separated by an energy of 40×10-21Jif the temperature is .Calculate the relative populations of two quantum states separated by an energy of if the temperature is 25°C .

Consider the reaction

A+BC+D

with all reactants and products gaseous (for simplicity) and an equilibrium constant K.

(a) Assume that the elementary steps in the reaction are those indicated by the stoichiometric equation (in each direction), with specific rate constants for the forward reaction and the reverse reaction, respectively, kf and kr. Derive the relation between kf, kr, and K. Comment on the general validity of the assumptions made about the relation of elementary steps and the stoichiometric equation and also on the general validity of K.

(b) Assume that the reaction as written is exothermic. Explain what this implies about the change of K with temperature. Explain also what it implies about the relation of the activation energies of the forward and reverse reactions and how this relation is consistent with your statement about the variation of K with temperature.

Question: The nuclide I131undergoes beta decay with a half-life of 8.041days. Large quantities of this nuclide were released into the environment in the Chernobyl accident. A victim of radiation poisoning has absorbed of 5.0×10-6g(5.0μg).

  1. Compute the activity in becquerels, of the data-custom-editor="chemistry" I131in this person, taking the atomic mass of the nuclide to equal 131gmol-1.
  2. Compute the radiation absorbed dose, in milligrays caused by this nuclide during the first second after its ingestion. Assume that beta particles emitted by data-custom-editor="chemistry" I131have an average kinetic energy of 0.40MeV, that all of this energy is deposited within the victim’s body and that victim weighs 69kg.
  3. Is this dose likely to be lethal? Remember that the activity ofI131diminishes as it decays.
See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free