Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: The triple bond in the N2molecule is very strong, but at high enough temperatures even it breaks down. At 5000 K, when the total pressure exerted by a sample of nitrogen is 1.00 atm,localid="1663413824968" N2gislocalid="1663413838372" 0.65%dissociated at equilibrium:

N2g2Ng

At 6000 K with the same total pressure, the proportion of localid="1663414733966" N2(g)dissociated at equilibrium rises to11.6%. Use the van’t Hoff equation to estimate thelocalid="1663413867221" ΔHof this reaction.

Short Answer

Expert verified

The value of ΔHis 12252.08.

Step-by-step solution

We have to find K at 5000K which isT1and at 6000K which is T2

Step by step solution

01

At 5000K

When N2gis0.65% dissociated at equilibrium the final equilibrium will be,

N2g2NgI1.00C-0.0065+20.0065E0.99350.0130

So,

K1=PN2PN2=0.013020.9935=1.70×10-4

02

At 6000K

WhenN2gis 11.6%dissociated at equilibrium the final equilibrium will be,

N2g2NgI1.00C-0.116+20.116E0.8840.232

So,

K2=PN2PN2=0.23220.884=6.09×10-2

03

By using Van’t Hoff equation estimating the ΔH

According to Van’t Hoff equation,

lnK2K1=-ΔH°R1T2-1T1ln6.09×10-21.70×10-4=-ΔH°0.08316000-15000ln358.23=ΔH°0.083×0.000045.881=ΔH°×0.00048ΔH°=5.8810.00048=12252.08

Hence the value of ΔHis 12252.08.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Quantum mechanics predicts that the energy of the ground state of the Hatom is -13.6eV. Insight into the magnitude of this quantity is gained by considering several methods by which it can be measured.

(a) Calculate the longest wavelength of light that will ionizeHatoms in their ground state.

(b) Assume the atom is ionized by collision with an electron that transfers all its kinetic energy to the atom in the ionization process. Calculate the speed of the electron before the collision. Express your answer in meters per second (ms-1)and miles per hour (milesh-1).

(c) Calculate the temperature required to ionize a Hatom in its ground state by thermal excitation. (Hint: Recall the criterion for thermal excitation of an oscillator in Planck's theory of blackbody radiation is thatkBT.)

HO2 is a highly reactive chemical species that plays a role in atmospheric chemistry. The rate of the gas-phase reaction.

HO2g+HO2g→H2O2g

is second order in [HO2], with a rate constant at 25°C of 1.4 × 109 L mol-1s-1. Suppose some HO2 with an initial concentration of 2.0 × 10-8 M could be confined at 25°C. Calculate the concentration that would remain after 1.0 s, assuming no other reactions take place.

A possible practical way to eliminate oxides of nitrogen from automobile exhaust gases uses Cyanuric acid (C3N3(OH)3). When heated to the relatively low temperature of 62.5F°, Cyanuric acid reacts with in the exhaust to form nitrogen, carbon dioxide and water all of which are normal constituents of the air.

a. Write balanced equation for these two reactions

b. If the process described earlier became practical, how much cyanide acid (in kilograms) would be required to absorb the 1.7×1010KgNO2generated annually in auto exhaust in the United States?

A white oxide of tungsten is 79.2976%tungsten by mass. A blue tungsten oxide also contains exclusively tungsten and oxygen and but it is 80.8473%tungsten by mass. Determine the empirical formulas of white tungsten oxide and blue tungsten oxide.

Question: Many important fertilizers are ionic compounds that contain the elements nitrogen, phosphorus, and potassium because these are frequently the limiting plant growth nutrients in soil.

(a)Write the chemical formulas for the following chemical fertilizers: ammonium phosphate, potassium nitrate, ammonium sulfate.

(b)Calculate the mass percentage of nitrogen, phosphorus, and potassium for each of the compounds in part (a).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free