Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When\(1\;{\rm{mol}}\)isobutene, a gas with formula\({{\rm{C}}_4}{{\rm{H}}_8}\), is burned at 250C d\(1atm\)to form\({\rm{C}}{{\rm{O}}_2}\)and gaseous water, the enthalpy change is\( - 2.528\;{\rm{kJ}}\)

(a) Calculate, with the aid of any information needed from Table D-4 in Appendix D, the standard enthalpy of formation of isobutene.

(b) Suppose that\(1atm\)isobutene is burned adiabatically at constant pressure in the presence of an excess of oxygen, with\(5.0\;{\rm{mol}}\)oxygen left at the end of the reaction. The heat capacity of the reaction vessel is\(700\;{\rm{J}}\;{{\rm{K}}^{ - 1}}\), and pertinent molar heat capacities (in joules per Kelvin per mole) are\({\rm{C}}{{\rm{O}}_2}(g),37;{{\rm{H}}_2}{\rm{O}}({\rm{g}})\), \(34;{{\rm{O}}_2}(\;{\rm{g}}),29\). What is the approximate final temperature of this system (including the reaction vessel)?

Short Answer

Expert verified

(a) The standard enthalpy changes of isobutene is\( - 1264\;{\rm{kJ}}\).

(b) The final temperature of this system is \(1553K\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

The number of moles and Standard enthalpy is given as:

\(\begin{array}{c}n\left( {{{\rm{C}}_4}{{\rm{H}}_8}} \right) = 1.00\;{\rm{mol}}\\\Delta H = - 2528\;{\rm{kJ}}\\\Delta {H_f}\left( {{\rm{C}}{{\rm{O}}_2}} \right) = - 393.51{\rm{kmo}}{{\rm{l}}^{ - 1}}\\\Delta {H_f}\left( {{{\rm{H}}_2}{\rm{O}}} \right) = - 241.82{\rm{kmo}}{{\rm{l}}^{ - 1}}\end{array}\)

The 1 mol of isobutene that burns to form\({\rm{C}}{{\rm{O}}_2}\)and\({{\rm{H}}_2}{\rm{O}}\):

\({{\rm{C}}_4}{{\rm{H}}_8}(g) + {{\rm{O}}_2}(g) \to {\rm{C}}{{\rm{O}}_2}(g) + {{\rm{H}}_2}{\rm{O}}(g)\)

The values of heat capacities are:

\(\begin{array}{c}{C_p}({\rm{ vessel }}) = 700{\rm{J}}{{\rm{K}}^{ - 1}}\\{C_p}\left( {{\rm{C}}{{\rm{O}}_2}} \right) = 37{\rm{J}}{{\rm{K}}^{ - 1}}\\{C_p}\left( {{{\rm{H}}_2}{\rm{O}}} \right) = 34{\rm{J}}{{\rm{K}}^{ - 1}}\end{array}\)

The number of moles are:

\(\begin{array}{c}n\left( {{{\rm{C}}_4}{{\rm{H}}_8}} \right) = 0.50\;{\rm{mol}}\\n{\left( {{{\rm{O}}_2}} \right)_{{\rm{excess }}}} = 5.00\;{\rm{mol}}\end{array}\)

02

Concept of change in enthalpy of reaction

Enthalpy change is the standard enthalpy of formation, which has been determined for a vast number of substances. In any general chemical reaction, the reactants undergo chemical changes and combine to give products. It can be represented by the following equation:

\({\mathop{\rm Re}\nolimits} ac\tan t \to \Pr oduct\)

For any such reaction, the change in enthalpy is represented as\[\Delta H\]and is termed as the reaction enthalpy.

The reaction enthalpy is calculated as:

Mathematically,

\[\Delta H = \Delta {H_1} + \Delta {H_2}\]

Where, \[\Delta {H_1}\] is change in enthalpy of reactant and \[\Delta {H_2}\] is change in enthalpy of product

03

Balance reaction

(a) Balance the carbon atoms. On the left side we have 4 and, on the right, only have \(1{\rm{C}}\) atom.

Therefore,\({{\rm{C}}_4}{{\rm{H}}_8}(g) + {{\rm{O}}_2}(g) \to 4{\rm{C}}{{\rm{O}}_2}(g) + {{\rm{H}}_2}{\rm{O}}(g)\).

Now we balance the hydrogen atoms required 8 atoms on each side.

\({{\rm{C}}_4}{{\rm{H}}_8}(g) + {{\rm{O}}_2}(g) \to 4{\rm{C}}{{\rm{O}}_2}(g) + 4{{\rm{H}}_2}{\rm{O}}(g)\)

Finally we balance out the oxygen atoms on the left side.

\({{\rm{C}}_4}{{\rm{H}}_8}(g) + 6{{\rm{O}}_2}(g) \to 4{\rm{C}}{{\rm{O}}_2}(g) + 4{{\rm{H}}_2}{\rm{O}}(g)\)

04

Calculate total enthalpy change

The formula,\(\Delta H = \sum \Delta {H_f}(products) - \sum \Delta {H_f}({\rm{ reactants }})\).

In our case the equation for the total enthalpy change would look like this.

\(\Delta H = 4\Delta {H_f}\left( {{\rm{C}}{{\rm{O}}_2}} \right) + 4\Delta {H_f}\left( {{{\rm{H}}_2}{\rm{O}}} \right) - \Delta {H_f}\left( {{{\rm{C}}_4}{{\rm{H}}_8}} \right)\)

Oxygen is excluded because it's standard enthalpy of formation is equal to\(0\).

Now determine the formula which give the standard enthalpy of formation of isobutene.

\(\begin{array}{l}\Delta {H_f}\left( {{{\rm{C}}_4}{{\rm{H}}_8}} \right) = 4\Delta {H_f}\left( {{\rm{C}}{{\rm{O}}_2}} \right) + 4\Delta {H_f}\left( {{{\rm{H}}_2}{\rm{O}}} \right) - \Delta H\\\Delta {H_f}\left( {{{\rm{C}}_4}{{\rm{H}}_8}} \right) = 4 \times ( - 393.51) + 4 \times ( - 241.82) - ( - 2528)\\\Delta {H_f}\left( {{{\rm{C}}_4}{{\rm{H}}_8}} \right) = - 11.88\;{\rm{kJ}}\end{array}\)

05

Evaluation of total heat capacity 

The temperature from the formula,\(\Delta H = {c_p}\Delta T\).

\(\Delta H = {c_p}\Delta T\)

Where\({c_p}\)is the total heat capacity of the system which is the sum of all of the heat capacities present.

\(\begin{array}{l}{c_p} = n\left( {{\rm{C}}{{\rm{O}}_2}} \right) \times {c_p}\left( {{\rm{C}}{{\rm{O}}_2}} \right) + n\left( {{{\rm{H}}_2}{\rm{O}}} \right) \times {c_p}\left( {{{\rm{H}}_2}{\rm{O}}} \right)n\left( {{{\rm{O}}_2}} \right) \times {c_p}\left( {{{\rm{O}}_2}} \right) + {c_p}({\rm{ vessel }})\\{c_p} = 2 \times 37 + 2 \times 34 + 5 \times 29 + 700\\{c_p} = 987{\rm{J}}{{\rm{K}}^{ - 1}}.\end{array}\)

06

Calculation of change in enthalpy for \(0.50\;{\rm{mol}}\)

Calculate the heat liberated from\(0.50\;{\rm{mol}}\)of isobutene.

\(\begin{array}{l}\Delta H = n \times \Delta {H_m}\\\Delta H = 0.50 \times ( - 2528)\\\Delta H = - 1264\;{\rm{kJ}}\end{array}\)

07

Calculation of temperature change 

(b) The temperature change is calculated as:

\(\begin{array}{l}\Delta T = \frac{{\Delta H}}{{{c_p}}}\\\Delta T = \frac{{1264 \times {{10}^3}}}{{987}}\\\Delta T = 1280.6\;{\rm{K}}\end{array}\)

08

Calculation of maximum temperature

The maximum temperature is calculated as:

Assume the initial temperature is 298 K (250C)

\(\begin{array}{c}\Delta T = {T_f} - {T_i}\\{T_f} = \Delta T + {T_i}\\{T_f} = 1280.6 + 298.\\{T_f} = 1553K\end{array}\)

09

step 9

Balance the carbon atoms. On the left side we have 4 and, on the right, only have\(1{\rm{C}}\)atom.

Therefore,\({{\rm{C}}_4}{{\rm{H}}_8}(g) + {{\rm{O}}_2}(g) \to 4{\rm{C}}{{\rm{O}}_2}(g) + {{\rm{H}}_2}{\rm{O}}(g)\).

Now we balance the hydrogen atoms required 8 atoms on each side.

\({{\rm{C}}_4}{{\rm{H}}_8}(g) + {{\rm{O}}_2}(g) \to 4{\rm{C}}{{\rm{O}}_2}(g) + 4{{\rm{H}}_2}{\rm{O}}(g)\)

Finally we balance out the oxygen atoms on the left side.

\({{\rm{C}}_4}{{\rm{H}}_8}(g) + 6{{\rm{O}}_2}(g) \to 4{\rm{C}}{{\rm{O}}_2}(g) + 4{{\rm{H}}_2}{\rm{O}}(g)\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free