Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(POCl3)At a moderately elevated temperature, phosphoryl chloride(POCl3)can be produced in the vapor phase from the gaseous elements. Write a balanced chemical equation and an equilibrium expression for this system. Note that gaseous phosphorus consists of P4(POCl3)molecules at moderate temperatures.

Short Answer

Expert verified

The balanced equation for the reaction is:

P4(g)+2O2(g)+6Cl2(g)4POCl3

And the equilibrium expression isK=PPOCl34PP4PO22PCl26

Step by step solution

01

Given information

The elements in the vapor phase are P4, O2,and Cl2 from phosphoryl chloride(POCl3).

02

Concept of the law of mass action

The rate of a chemical reaction at a particular temperature and moment is directly proportional to the product of the active masses of the reactants, according to the law.

For a gas phase reaction-aA+bBcC+dD

03

Calculate equilibrium expression

The unbalanced equation is as follows:


Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the presence of vanadium oxide, SO2(g) reacts with an excess of oxygen to give SO3(g):

SO2+12O2SO3

This reaction is an important step in the manufacture of sulfuric acid. It is observed that tripling the SO2 concentration increases the rate by a factor of 3, but tripling the SO3concentration decreases the rate by a factor of . The rate is insensitive to the O2 concentration as long as an excess of oxygen is present

(a) Write the rate expression for this reaction, and give the units of the rate constant k.

(b) If [SO2] is multiplied by 2 and [SO3] by 4 but all other conditions are unchanged, what change in the rate will be observed?

Arrange the following compounds from left to right inorder of increasing percentage by mass of hydrogen: H2O,C12H26,N4H6,LiH

A binary compound of nickel and oxygen contain 78.06% nickel by mass. In this stoichiometric or a stoichiometric compound. Explain?

Quantum mechanics predicts that the energy of the ground state of the Hatom is -13.6eV. Insight into the magnitude of this quantity is gained by considering several methods by which it can be measured.

(a) Calculate the longest wavelength of light that will ionizeHatoms in their ground state.

(b) Assume the atom is ionized by collision with an electron that transfers all its kinetic energy to the atom in the ionization process. Calculate the speed of the electron before the collision. Express your answer in meters per second (ms-1)and miles per hour (milesh-1).

(c) Calculate the temperature required to ionize a Hatom in its ground state by thermal excitation. (Hint: Recall the criterion for thermal excitation of an oscillator in Planck's theory of blackbody radiation is thatkBT.)

69.The water in a pressure cooker boils at a temperature greater than 100°C because it is under pressure. At this higher temperature, the chemical reactions associated with the cooking of food take place at a greater rate.

(a) Some food cooks fully in 5 min in a pressure cooker at 112°C and in 10 minutes in an open pot at 100°C. Calculate the average activation energy for the reactions associated with the cooking of this food.

(b) How long will the same food take to cook in an open pot of boiling water in Denver, where the average atmospheric pressure is 0.818 atm and the boiling point of water is 94.4°C?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free