Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Complete and balance the following equations for reactions

taking place in acidic solution.

  1. \[\mathop {\rm{MnO}}_{\rm{4}}^{\rm{ - }}\left( {{\rm{aq}}} \right){\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{S}}\left( {{\rm{aq}}} \right) \to {\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}\left( {{\rm{aq}}} \right){\rm{ + SO}}_{\rm{4}}^{{\rm{2 - }}}\left( {{\rm{aq}}} \right)\]

Short Answer

Expert verified
  1. The balanced equation is as follows:

    \[\mathop {\rm{8MnO}}_{\rm{4}}^{\rm{ - }}\left( {{\rm{aq}}} \right){\rm{ + 5}}{{\rm{H}}_{\rm{2}}}{\rm{S}}\left( {{\rm{aq}}} \right) + 14{{\rm{H}}^ + }\left( {{\rm{aq}}} \right) \to 8{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}\left( {{\rm{aq}}} \right){\rm{ + 5SO}}_{\rm{4}}^{{\rm{2 - }}}\left( {{\rm{aq}}} \right) + 12{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right)\]

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given information

The reaction is given as follows:

\[\mathop {\rm{MnO}}_{\rm{4}}^{\rm{ - }}\left( {{\rm{aq}}} \right){\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{S}}\left( {{\rm{aq}}} \right) \to {\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}\left( {{\rm{aq}}} \right){\rm{ + SO}}_{\rm{4}}^{{\rm{2 - }}}\left( {{\rm{aq}}} \right)\]

02

Step 2: Oxidation number change method

The oxidation number change method is a method by which we can balance the redox reactions. In this method, the oxidation number of each atom is determined first. Then, we multiply the atoms in which the oxidation number is changed with a whole number.

03

Finding out the oxidation number change

The reaction is given below:

\[\mathop {\rm{MnO}}_{\rm{4}}^{\rm{ - }}\left( {{\rm{aq}}} \right){\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{S}}\left( {{\rm{aq}}} \right) \to {\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}\left( {{\rm{aq}}} \right){\rm{ + SO}}_{\rm{4}}^{{\rm{2 - }}}\left( {{\rm{aq}}} \right)\]

In this reaction, both oxidation and reduction occurs. The reaction indicated with the oxidation number is given below:

\[\mathop {{\rm{Mn}}}\limits^{ + 7} \mathop {{\rm{O}}_{\rm{4}}^{\rm{ - }}}\limits^{ - 2} \left( {{\rm{aq}}} \right){\rm{ + }}\mathop {{{\rm{H}}_{\rm{2}}}}\limits^{ + 1} \mathop {\rm{S}}\limits^{ - 2} \left( {{\rm{aq}}} \right) \to \mathop {{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}}\limits^{ + 2} \left( {{\rm{aq}}} \right){\rm{ + }}\mathop {\rm{S}}\limits^{ + 6} \mathop {{\rm{O}}_{\rm{4}}^{{\rm{2 - }}}}\limits^{ - 2} \left( {{\rm{aq}}} \right)\]

Manganese reduced its oxidation number from +7 to +2, causing reduction. Sulfur increased its oxidation number from -2 to +6, causing oxidation.

04

Divide to oxidation half and reduction half

Oxidation-half reaction can be written as:

\[\mathop {{{\rm{H}}_{\rm{2}}}}\limits^{ + 1} \mathop {\rm{S}}\limits^{ - 2} \left( {{\rm{aq}}} \right) \to \mathop {\rm{S}}\limits^{ + 6} \mathop {{\rm{O}}_{\rm{4}}^{{\rm{2 - }}}}\limits^{ - 2} \left( {{\rm{aq}}} \right) + 8{{\rm{e}}^ - }\]

The reduction-half reaction can be written as:

\[\mathop {{\rm{Mn}}}\limits^{ + 7} \mathop {{\rm{O}}_{\rm{4}}^{\rm{ - }}}\limits^{ - 2} \left( {{\rm{aq}}} \right){\rm{ + 5}}{{\rm{e}}^ - } \to \mathop {{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}}\limits^{ + 2} \left( {{\rm{aq}}} \right)\]

05

Balancing the charge

Since the reaction occur in acidic medium, we can add${{\rm{H}}^ + }$ion on the side, where the positive charge is deficient, to balance the charge.

Oxidation-half:\[\mathop {{{\rm{H}}_{\rm{2}}}}\limits^{ + 1} \mathop {\rm{S}}\limits^{ - 2} \left( {{\rm{aq}}} \right) \to \mathop {\rm{S}}\limits^{ + 6} \mathop {{\rm{O}}_{\rm{4}}^{{\rm{2 - }}}}\limits^{ - 2} \left( {{\rm{aq}}} \right) + 8{{\rm{e}}^ - } + 10{{\rm{H}}^ + }\]

Reduction-half: \[\mathop {{\rm{Mn}}}\limits^{ + 7} \mathop {{\rm{O}}_{\rm{4}}^{\rm{ - }}}\limits^{ - 2} \left( {{\rm{aq}}} \right){\rm{ + 5}}{{\rm{e}}^ - } + 8{{\rm{H}}^ + } \to \mathop {{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}}\limits^{ + 2} \left( {{\rm{aq}}} \right)\]

06

Balancing the oxygen atoms

Now, we can add water molecules to balance the oxygen atoms.

Oxidation:\[\mathop {{{\rm{H}}_{\rm{2}}}}\limits^{ + 1} \mathop {\rm{S}}\limits^{ - 2} \left( {{\rm{aq}}} \right) + 4{{\rm{H}}_{\rm{2}}}{\rm{O}} \to \mathop {\rm{S}}\limits^{ + 6} \mathop {{\rm{O}}_{\rm{4}}^{{\rm{2 - }}}}\limits^{ - 2} \left( {{\rm{aq}}} \right) + 8{{\rm{e}}^ - } + 10{{\rm{H}}^ + }\]

Reduction: \[\mathop {{\rm{Mn}}}\limits^{ + 7} \mathop {{\rm{O}}_{\rm{4}}^{\rm{ - }}}\limits^{ - 2} \left( {{\rm{aq}}} \right){\rm{ + 5}}{{\rm{e}}^ - } + 8{{\rm{H}}^ + } \to \mathop {{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}}\limits^{ + 2} \left( {{\rm{aq}}} \right) + 4{{\rm{H}}_{\rm{2}}}{\rm{O}}\]

07

Equalization of electrons gained and lost

The electrons gained in the oxidation reaction must be same as the electrons lost in the reduction reaction. If they are not same, we must multiply both the reactions with the coefficients.

Oxidation:\[\mathop {{{\rm{H}}_{\rm{2}}}}\limits^{ + 1} \mathop {\rm{S}}\limits^{ - 2} \left( {{\rm{aq}}} \right) + 4{{\rm{H}}_{\rm{2}}}{\rm{O}} \to \mathop {\rm{S}}\limits^{ + 6} \mathop {{\rm{O}}_{\rm{4}}^{{\rm{2 - }}}}\limits^{ - 2} \left( {{\rm{aq}}} \right) + 8{{\rm{e}}^ - } + 10{{\rm{H}}^ + }\;\;\;\; \times 5\]

Reduction:\[\mathop {{\rm{Mn}}}\limits^{ + 7} \mathop {{\rm{O}}_{\rm{4}}^{\rm{ - }}}\limits^{ - 2} \left( {{\rm{aq}}} \right){\rm{ + 5}}{{\rm{e}}^ - } + 8{{\rm{H}}^ + } \to \mathop {{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}}\limits^{ + 2} \left( {{\rm{aq}}} \right) + 4{{\rm{H}}_{\rm{2}}}{\rm{O}}\;\;\;\; \times {\rm{8}}\]

Hence, the reactions become as follows:

Oxidation:\[5\mathop {{{\rm{H}}_{\rm{2}}}}\limits^{ + 1} \mathop {\rm{S}}\limits^{ - 2} \left( {{\rm{aq}}} \right) + 20{{\rm{H}}_{\rm{2}}}{\rm{O}} \to 5\mathop {\rm{S}}\limits^{ + 6} \mathop {{\rm{O}}_{\rm{4}}^{{\rm{2 - }}}}\limits^{ - 2} \left( {{\rm{aq}}} \right) + 40{{\rm{e}}^ - } + 50{{\rm{H}}^ + }\]

Reduction: \[\mathop {{\rm{8Mn}}}\limits^{ + 7} \mathop {{\rm{O}}_{\rm{4}}^{\rm{ - }}}\limits^{ - 2} \left( {{\rm{aq}}} \right){\rm{ + 40}}{{\rm{e}}^ - } + 64{{\rm{H}}^ + } \to 8\mathop {{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}}\limits^{ + 2} \left( {{\rm{aq}}} \right) + 32{{\rm{H}}_{\rm{2}}}{\rm{O}}\]

08

Addition of both reactions and its simplification

When we add both reactions together, we get the equation given below:

\[5\mathop {{{\rm{H}}_{\rm{2}}}}\limits^{ + 1} \mathop {\rm{S}}\limits^{ - 2} \left( {{\rm{aq}}} \right) + 20{{\rm{H}}_{\rm{2}}}{\rm{O + }}\mathop {{\rm{8Mn}}}\limits^{ + 7} \mathop {{\rm{O}}_{\rm{4}}^{\rm{ - }}}\limits^{ - 2} \left( {{\rm{aq}}} \right){\rm{ + 40}}{{\rm{e}}^ - } + 64{{\rm{H}}^ + } \to 5\mathop {\rm{S}}\limits^{ + 6} \mathop {{\rm{O}}_{\rm{4}}^{{\rm{2 - }}}}\limits^{ - 2} \left( {{\rm{aq}}} \right) + 40{{\rm{e}}^ - } + 50{{\rm{H}}^ + } + 8\mathop {{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}}\limits^{ + 2} \left( {{\rm{aq}}} \right) + 32{{\rm{H}}_{\rm{2}}}{\rm{O}}\]

On simplification, we get

\[\mathop {\rm{8MnO}}_{\rm{4}}^{\rm{ - }}\left( {{\rm{aq}}} \right){\rm{ + 5}}{{\rm{H}}_{\rm{2}}}{\rm{S}}\left( {{\rm{aq}}} \right) + 14{{\rm{H}}^ + }\left( {{\rm{aq}}} \right) \to 8{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}\left( {{\rm{aq}}} \right){\rm{ + 5SO}}_{\rm{4}}^{{\rm{2 - }}}\left( {{\rm{aq}}} \right) + 12{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right)\]

Therefore, the balanced equation is

\[\mathop {\rm{8MnO}}_{\rm{4}}^{\rm{ - }}\left( {{\rm{aq}}} \right){\rm{ + 5}}{{\rm{H}}_{\rm{2}}}{\rm{S}}\left( {{\rm{aq}}} \right) + 14{{\rm{H}}^ + }\left( {{\rm{aq}}} \right) \to 8{\rm{M}}{{\rm{n}}^{{\rm{2 + }}}}\left( {{\rm{aq}}} \right){\rm{ + 5SO}}_{\rm{4}}^{{\rm{2 - }}}\left( {{\rm{aq}}} \right) + 12{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right)\]

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: The outermost electron in an alkali-metal atom is sometimes described as resembling an electron in the corresponding state of a one-electron atom. Compare the first ionization energy of lithium with the binding energy of a 2selectron in a one-electron atom that has nuclear charge Zeff, and determine the value of Zeff that is necessary for the two energies to agree. Repeat the calculation for the 3s electron of sodium and the 4selectron of potassium.

Two binary oxides of the element manganese contain, respectively 30.40% and 36.81% oxygen by mass. Calculate empirical formulas of the two oxides.

Question: The half-lives of U235and U238are 7.04ร—108years and role="math" localid="1660824319605" 4.47ร—109years, respectively, and the present abundance ratio is role="math" localid="1660824295665" U238/U235=137.7. It is thought that their abundance ratio was 1 at some time before our earth and solar system was formed about role="math" localid="1660824359231" 4.9ร—109years ago. Estimate how long ago the supernova occurred that supposedly produced all the uranium isotopes in equal abundance, including the two longest lived isotopes, U235and U238.

Acetaminophen is the generic name of the pain reliever in Tylenol and some other headache remedies. The compound has the molecular formula C8H9NO2. Compute, to four significant figures, the mass percentage of each of the four elements in acetaminophen.

Arrange the following compounds from left to right inorder of increasing percentage by mass of hydrogen: H2O,C12H26,N4H6,LiH

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free