Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The reaction FClO2gFClOg+Og is first order with a rate constant of 6.76 × 10-4s-1 at 322°C.

(a) Calculate the half-life of the reaction at 322°C.

(b) If the initial partial pressure of FClO2 in a container at 322°C is 0.040 atm, how long will it take to fall to 0.010 atm?FClO2gFClOg+Og

Short Answer

Expert verified

The time taken for the reaction is 2.1×103s

Step by step solution

01

Half life of the reaction:

a) Half life of the reaction is given by the eqution given below

t12=0.693k...........1

Where k is the rate constant of the reaction, t12is the half life of the reaction substituting k=6.76×10-4 in eqaution1

Half life of the reaction at322°Cis1.0×10-3s

02

Time of the reaction:

Rate law of the reaction when initial and final pressure are given

2.303logP0Pt=kt........2

Where P0 and Pt are initial and final pressure k is the rate constant of the reaction.

Substituting the values of initial, final pressures in the equation 2

2.303log0.0400.010=kt........2=6.7×10-4s-1×tt=2.3036.7×10-4log4t=2.1×103s

Hence the time taken for the reaction is2.1×103s

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Aspartame (Molecular formula of C14H18N2O5) is a sugar substitute in soft drinks. Under certain conditions one mol of aspartame reacts with 2 mol of water to give 1 mol of aspartic acid (molecular formula), 1 mol of methanol (molecular formula CH3OH) and 1 mol of phenylalanine. Determine the molecular formula of phenylalanine.

HCl reacts with propene (CH3CHCH2) in the gas phase according to the overall reaction.

HCl + CH3CH CH2 → CH3CHClCH3

The experimental rate expression is

rate = k[ HCl ]3 [ CH3CHCH2 ]

Which, if any, of the following mechanisms are consistent with the observed rate expression?

a) HCl + HCl ⇄ H + HCl2 (Fast)

H + CH3C lCH2 → CH3CH CH3(Slow)

HCl2 + CH3CH CH3 → CH3CHClCH3 + HCl (Fast)

b) HCl + HCl ⇄ H2Cl2

HCl + CH3CHCH2 → CH3CHCl CH3*(Slow)

CH3CHCl CH3*+ H2Cl2→ CH3CHCl CH3+ 2HCl

c) HCl + CH3CH CH2 → H +CH3CHClCH2 (Fast equilbrium)

H + HCl ⇄ H2Cl (Fast equilbrium)

H2Cl + CH3CHCl CH2 → HCl + CH3CHCl CH3 (Slow)

Question: The triple bond in the N2molecule is very strong, but at high enough temperatures even it breaks down. At 5000 K, when the total pressure exerted by a sample of nitrogen is 1.00 atm,localid="1663413824968" N2gislocalid="1663413838372" 0.65%dissociated at equilibrium:

N2g2Ng

At 6000 K with the same total pressure, the proportion of localid="1663414733966" N2(g)dissociated at equilibrium rises to11.6%. Use the van’t Hoff equation to estimate thelocalid="1663413867221" ΔHof this reaction.

A dark brown binary compound contains oxygen and a metal. It is oxygen by mass. Heating it moderately drives of some of the oxygen and gives a red binary compound that is 9.334%oxygen by mass. Strong heating drives drives off more oxygen and gives still binary compound, which is only 7.168% oxygen by mass.

a. Compute the mass of oxygen that is combined with 1.000g of the metal in each of these three oxides.

b. Assume that the empirical formula of the first compound isMO2 (Where M represents the metal). Give the empirical formula of second and third compounds.

c. Name the Metal.

Question: All of the halogens reaction directly with to give binary compounds. The reactions are

F2(g)+H2(g)2HF(g)Cl2(g)+H2(g)2HCl(g)Br2(g)+H2(g)2HBr(g)I2(g)+H2(g)2HI

Using the data in Appendix D, compute of each reaction and identify a periodic trend, if any.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free