Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 200

Consider the chemical reaction, \(\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})\) The rate of this reaction can be expressed in terms of time derivatives of concentration of \(\mathrm{N}_{2}(\mathrm{~g}), \mathrm{H}_{2}\) (g) or \(\mathrm{NH}_{3}(\mathrm{~g})\). Identify the correct relationship amongst the rate expressions. a. rate \(=-\mathrm{d}\left[\mathrm{N}_{2}\right] / \mathrm{dt}=-1 / 3 \mathrm{~d}\left[\mathrm{H}_{2}\right] / \mathrm{dt}=1 / 2 \mathrm{~d}\left[\mathrm{NH}_{3}\right] / \mathrm{dt}\) b. rate \(=-\mathrm{d}\left[\mathrm{N}_{2}\right] / \mathrm{dt}=-3 \mathrm{~d}\left[\mathrm{H}_{2}\right] / \mathrm{dt}=2 \mathrm{~d}\left[\mathrm{NH}_{3}\right] / \mathrm{dt}\) c. rate \(=-\mathrm{d}\left[\mathrm{N}_{2}\right] / \mathrm{dt}=-1 / 3 \mathrm{~d}\left[\mathrm{H}_{2}\right] / \mathrm{dt}=2 \mathrm{~d}\left[\mathrm{NH}_{3}\right] / \mathrm{dt}\) d. rate \(=-\mathrm{d}\left[\mathrm{N}_{2}\right] / \mathrm{dt}=\mathrm{d}\left[\mathrm{H}_{2}\right] / \mathrm{dt}=\mathrm{d}\left[\mathrm{NH}_{3}\right] / \mathrm{dt}\)

Problem 201

In a first order reaction the concentration of reactant decreases from \(800 \mathrm{~mol} / \mathrm{dm}^{3}\) to \(50 \mathrm{~mol} / \mathrm{dm}^{3}\) in \(2 \times\) \(10^{4} \mathrm{sec}\). The rate constant of reaction in \(\mathrm{sec}^{-1}\) is a. \(2 \times 10^{4}\) b. \(3.45 \times 10^{-5}\) c. \(1.386 \times 10^{-4}\) d. \(2 \times 10^{-4}\)

Problem 202

In a first order reaction the concentration of reactant decreases from \(800 \mathrm{~mol} / \mathrm{dm}^{3}\) to \(50 \mathrm{~mol} / \mathrm{dm}^{3}\) in \(2 \times\) \(10^{4} \mathrm{sec}\). The rate constant of reaction in \(\mathrm{sec}^{-1}\) is a. \(2 \times 10^{4}\) b. \(3.45 \times 10^{-5}\) c. \(1.386 \times 10^{-4}\) d. \(2 \times 10^{-4}\)

Problem 203

The reaction \(\mathrm{X} \rightarrow\) product follows first order kinetics. In 40 minutes, the concentration of \(X\) changes from \(0.1 \mathrm{M}\) to \(0.025 \mathrm{M}\), then the rate of reaction when concentration of \(\mathrm{X}\) is \(0.01 \mathrm{M}\) is a. \(3.47 \times 10^{-5} \mathrm{M} / \mathrm{min}\) b. \(1.73 \times 10^{-4} \mathrm{M} / \mathrm{min}\) c. \(1.73 \times 10^{-5} \mathrm{M} / \mathrm{min}\) d. \(3.47 \times 10^{-4} \mathrm{M} / \mathrm{min}\)

Problem 204

Which of the following is incorrect about order of reaction? a. it is calculated experimentally b. it is sum of powers of concentration in rate law expression c. the order of reaction cannot be fractional d. there is not necessarily a connection between order and stoichiometry of a reaction.

Problem 205

Consider a reaction \(\mathrm{aG}+\mathrm{bH} \rightarrow\) Products. When concentration of both the reactants \(\mathrm{G}\) and \(\mathrm{H}\) is doubled, the rate increases by eight times. However when concentration of \(\mathrm{G}\) is doubled keeping the concentration of \(\mathrm{H}\) fixed, the rate is doubled. The overall order of the reaction is a. 0 b. 1 c. 2 d. 3

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks