Calculate \(\Delta G_{R}^{\circ}\) at 600.00 K
To calculate \(\Delta G_{R}^{\circ}\) at 600 K, we will use the Gibbs-Helmholtz equation:
\(\Delta G_{R}^{\circ}(T) = \Delta G_{R}^{\circ}(298.15 \, \text{K}) + \Delta H_{R}^{\circ}(298.15 \, \text{K})\cdot\left(\frac{1}{T} - \frac{1}{298.15 \, \text{K}}\right)\)
Now, we need to find the standard enthalpy change of the reaction (\(\Delta H_{R}^{\circ}\)) at 298.15 K. We can use the standard enthalpies of formation (\(\Delta H_{f}^{\circ}\)) of the species involved in the reaction:
\(\Delta H_{R}^{\circ}(298.15 \, \text{K}) = \Delta H_{f,CO₂}^{\circ}(298.15 \, \text{K}) - \Delta H_{f,CO}^{\circ}(298.15 \, \text{K}) - \frac{1}{2}\Delta H_{f,O₂}^{\circ}(298.15 \, \text{K})\)
Again, we can find these values in thermodynamic tables:
\(\Delta H_{f,CO}^{\circ} (298.15\, \text{K}) = -110.53 \, \text{kJ/mol}\)
\(\Delta H_{f,CO₂}^{\circ} (298.15\, \text{K}) = -393.51 \, \text{kJ/mol}\)
\(\Delta H_{f,O₂}^{\circ} (298.15\, \text{K}) = 0 \, \text{kJ/mol}\) (as it is an element in its standard state)
Now we can calculate the standard enthalpy change of the reaction:
\(\Delta H_{R}^{\circ}(298.15 \, \text{K}) = (-393.51) - (-110.53) - \frac{1}{2}(0) = -282.98 \, \text{kJ/mol}\)
Now, we can use the Gibbs-Helmholtz equation to calculate \(\Delta G_{R}^{\circ}\) at 600.00 K:
\(\Delta G_{R}^{\circ}(600\, \text{K}) = -257.19 \, \text{kJ/mol} - 282.98 \, \text{kJ/mol}\cdot\left(\frac{1}{600\, \text{K}} - \frac{1}{298.15\, \text{K}}\right)\)
\(\Delta G_{R}^{\circ}(600\, \text{K}) \approx -209.06 \, \text{kJ/mol}\)
So, the standard Gibbs free energy change (\(\Delta G_{R}^{\circ}\)) for the given reaction is approximately -257.19 kJ/mol at 298.15 K and -209.06 kJ/mol at 600.00 K.