In this problem, you calculate the error in assuming that \(\Delta
H_{R}^{\circ}\) is independent of \(T\) for the reaction \(2 \mathrm{CuO}(s)
\rightleftharpoons 2 \mathrm{Cu}(s)+\mathrm{O}_{2}(g)\) The following data are
given at \(25^{\circ} \mathrm{C}\)
$$\begin{array}{lccc}\text { Compound } & \mathrm{CuO}(s) & \mathrm{Cu}(s) &
\mathrm{O}_{2}(\mathrm{g}) \\\\\hline \Delta H_{f}^{\circ}\left(\mathrm{kJ}
\mathrm{mol}^{-1}\right) & -157 & & \\
\Delta G_{f}^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right) & -130 & &
\\\C_{P, m}\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}\right) & 42.3 &
24.4 & 29.4\end{array}$$
a. From Equation (6.65),
$$\int_{K_{P}\left(T_{0}\right)}^{K_{P}\left(T_{f}\right)} d \ln
K_{P}=\frac{1}{R} \int_{T_{0}}^{T_{f}} \frac{\Delta H_{R}^{\circ}}{T^{2}} d
T$$ To a good approximation, we can assume that the heat capacities are
independent of temperature over a limited range in temperature, giving \(\Delta
H_{R}^{\circ}(T)=\Delta H_{R}^{\circ}\left(T_{0}\right)+\)
\(\Delta C_{P}\left(T-T_{0}\right)\) where \(\Delta C_{P}=\Sigma_{i} v_{i} C_{P,
m}(i) .\) By integrat-
ing Equation \((6.65),\) show that $$\begin{aligned}\ln K_{P}(T)=\ln
K_{P}\left(T_{0}\right) &-\frac{\Delta
H_{R}^{\circ}\left(T_{0}\right)}{R}\left(\frac{1}{T}-\frac{1}{T_{0}}\right)
\\\&+\frac{T_{0} \times \Delta
C_{P}}{R}\left(\frac{1}{T}-\frac{1}{T_{0}}\right) \\\&+\frac{\Delta C_{P}}{R}
\ln \frac{T}{T_{0}}\end{aligned}$$
b. Using the result from part (a), calculate the equilibrium pressure of
oxygen over copper and \(\mathrm{CuO}(s)\) at \(1275 \mathrm{K}\) How is this
value related to \(K_{P}\) for the reaction \(2 \mathrm{CuO}(s)
\rightleftharpoons 2 \mathrm{Cu}(s)+\mathrm{O}_{2}(g) ?\)
c. What value of the equilibrium pressure would you obtain if you assumed that
\(\Delta H_{R}^{\circ}\) were constant at its value for \(298.15 \mathrm{K}\) up
to \(1275 \mathrm{K} ?\)