Chapter 36: Problem 4
The Rice-Herzfeld mechanism for the thermal decomposition of acetaldehyde \(\left(\mathrm{CH}_{3} \mathrm{CO}(g)\right)\) is \\[ \begin{array}{l} \mathrm{CH}_{3} \mathrm{CHO}(g) \stackrel{k_{1}}{\longrightarrow} \mathrm{CH}_{3} \cdot(g)+\mathrm{CHO} \cdot(g) \\ \mathrm{CH}_{3} \cdot(g)+\mathrm{CH}_{3} \mathrm{CHO}(g) \stackrel{k_{2}}{\longrightarrow} \mathrm{CH}_{4}(g)+\mathrm{CH}_{2} \mathrm{CHO} \cdot(g) \\ \mathrm{CH}_{2} \mathrm{CHO} \cdot(g) \stackrel{k_{3}}{\longrightarrow} \mathrm{CO}(g)+\mathrm{CH}_{3} \cdot(g) \\ \mathrm{CH}_{3} \cdot(g)+\mathrm{CH}_{3} \cdot(g) \stackrel{k_{4}}{\longrightarrow} \mathrm{C}_{2} \mathrm{H}_{6}(g) \end{array} \\] Using the steady-state approximation, determine the rate of methane \(\left(\mathrm{CH}_{4}(g)\right)\) formation.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.