Chapter 36: Problem 35
The Kermack-McKendrick model was developed to explain the rapid rise and fall in the number of infected people during epidemics. This model involves the interaction of susceptible (S), infected (I), and recovered (R) people through the following mechanism: \\[ \begin{array}{l} \mathrm{S}+\mathrm{I} \stackrel{k_{1}}{\longrightarrow} \mathrm{I}+\mathrm{I} \\\ \mathrm{I} \stackrel{k_{2}}{\longrightarrow} \mathrm{R} \end{array} \\] a. Write down the differential rate expressions for \(S,\) I, and \(R\) b. The key quantity in this mechanism is called the epidemiological threshold defined as the ratio of \([\mathrm{S}] k_{1} / k_{2}\). When this ratio is greater than 1 the epidemic will spread; however, when the threshold is less than 1 the epidemic will die out. Based on the mechanism, explain why this behavior is observed.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.