Chapter 35: Problem 10
P35.10 (Challenging) The first-order thermal decomposition of chlorocyclohexane is as follows: \(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}(g) \rightarrow\) \(\mathrm{C}_{6} \mathrm{H}_{10}(g)+\mathrm{HCl}(g) .\) For a constant volume system the following total pressures were measured as a function of time: $$\begin{array}{rccr}\text { Time }(s) & P(\text { Torr }) & \text { Time }(s) & P(\text { Torr }) \\\\\hline 3 & 237.2 & 24 & 332.1 \\\6 & 255.3 & 27 & 341.1 \\\9 & 271.3 & 30 & 349.3 \\\12 & 285.8 & 33 & 356.9 \\\15 & 299.0 & 36 & 363.7 \\\18 & 311.2 & 39 & 369.9 \\\21 & 322.2 & 42 & 375.5\end{array}$$ a. Derive the following relationship for a first-order reaction: \\[P\left(t_{2}\right)-P\left(t_{1}\right)=\left(P\left(t_{\infty}\right)-P\left(t_{0}\right)\right) e^{-k t_{1}}\left(1e^{-k\left(t_{2}-t_{1}\right)}\right)\\] In this relation, \(P\left(t_{1}\right)\) and \(P\left(t_{2}\right)\) are the pressures at two specific times; \(\mathrm{P}\left(t_{0}\right)\) is the initial pressure when the reaction is initiated, \(P\left(t_{\infty}\right)\) is the pressure at the completion of the reaction, and \(k\) is the rate constant for the reaction. To derive this relationship do the following: i. Given the first-order dependence of the reaction, write the expression for the pressure of chlorocyclohexane at a specific time \(t_{1}\) ii. Write the expression for the pressure at another time \(t_{2},\) which is equal to \(t_{1}+\Delta\) where delta is a fixed quantity of time. iii. Write expressions for \(P\left(t_{\infty}\right)-P\left(t_{1}\right)\) and \(P\left(t_{\infty}\right) P\left(t_{2}\right)\) iv. Subtract the two expressions from part (iii). b. Using the natural log of the relationship from part (a) and the data provided in the table given earlier in this problem, determine the rate constant for the decomposition of chlorocyclohexane. (Hint: Transform the data in the table by defining \(t_{2}-t_{1}\) to be a constant value, for example, 9 s.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.