Chapter 31: Problem 48
The effect of symmetry on the rotational partition function for \(\mathrm{H}_{2}\) was evaluated by recognizing that each hydrogen is a spin \(1 / 2\) particle and is, therefore, a fermion. However, this development is not limited to fermions, but is also applicable to bosons. Consider \(\mathrm{CO}_{2}\) in which rotation by \(180^{\circ}\) results in the interchange of two spin 0 particles. a. Because the overall wave function describing the interchange of two bosons must be symmetric with respect to exchange, to what \(J\) levels is the summation limited in evaluating \(q_{R}\) for \(\mathrm{CO}_{2} ?\) b. The rotational constant for \(\mathrm{CO}_{2}\) is \(0.390 \mathrm{cm}^{-1}\). Calculate \(q_{R}\) at \(298 \mathrm{K} .\) Do you have to evaluate \(q_{R}\) by summation of the allowed rotational energy levels? Why or why not?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.