Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A graduate student tried to make o-fluorophenylmagnesium bromide by adding magnesium to an ether solution of o-fluorobromobenzene. After obtaining puzzling results with this reaction, she repeated the reaction by using as solvent some tetrahydrofuran that contained a small amount of furan. From this reaction, she isolated a fair yield of the compound that follows. Propose a mechanism for its formation

Short Answer

Expert verified

When O-fluoro bromobenzene is added to magnesium in tetra hydra furan solution it forms O-fluoro phenyl magnesium bromide. But this compound forms the benzyne intermediate.

Step by step solution

01

Formation of benzyne intermediate

When O-fluoro bromobenzene is added to magnesium in tetra hydra furan solution it forms O-fluoro phenyl magnesium bromide. But this compound forms the benzyne intermediate.

02

Formation of Diels alder adduct

As the solvent contains a small amount of furan, the benzyne undergoes a Diels alder reaction to form the adduct. The reaction mechanism is represented as follows:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Most of the Fischer esterification mechanism is identical with the mechanism of acetal formation. The difference is in the final step, where a resonance-stabilized carbocation loses a proton to give the ester. Write mechanisms for the following reactions, with the comparable steps directly above and below each other. Explain why the final step of the esterification (proton loss) cannot occur in acetal formation, and show what happens instead.

Question: Phenols are less acidic than carboxylic acids, with values of around 10. Phenols are deprotonated by (and therefore soluble in) solutions of sodium hydroxide but not by solutions of sodium bicarbonate. Explain how you would use extractions to isolate the three pure compounds from a mixture of p-cresol (p-methylphenol), cyclohexanone, and benzoic acid.

Question: A carboxylic acid has two oxygen atoms, each with two nonbonding pairs of electrons.

  1. Draw the resonance forms of a carboxylic acid that is protonated on the hydroxy oxygen atom.
  2. Compare the resonance forms with those given previously for an acid protonated on the carbonyl oxygen atom.
  3. Explain why the carbonyl oxygen atom of a carboxylic acid is more basic than the hydroxy oxygen.

Question: A carboxylic acid has two oxygen atoms, each with two nonbonding pairs of electrons.

  1. Draw the resonance forms of a carboxylic acid that is protonated on the hydroxy oxygen atom.
  2. Compare the resonance forms with those given previously for an acid protonated on the carbonyl oxygen atom.
  3. Explain why the carbonyl oxygen atom of a carboxylic acid is more basic than the hydroxy oxygen.

Question:

  1. The Key Mechanism for Fischer esterification omitted some important resonance forms of the intermediates shown in brackets. Complete the mechanism by drawing all the resonance forms of these two intermediates.
  2. Propose a mechanism for the acid-catalyzed reaction of acetic acid with ethanol to give ethyl acetate.
  3. The Principle of Microscopic Reversibility states that a forward reaction and a reverse reaction taking place under the same conditions (as in equilibrium) must follow the same reaction pathway in microscopic detail. The reverse of the Fischer esterification is the acid-catalyzed hydrolysis of an ester. Propose a mechanism for the acid-catalyzed hydrolysis of ethyl benzoate, PhCOOCH2CH3.
See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free