Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Raffinose is a trisaccharide (C18H32O16) isolated from cottonseed meal. Raffinose does not reduce Tollens reagent, and it does not mutarotate. Complete hydrolysis of raffinose gives D-glucose, D-fructose, and D-galactose. When raffinose is treated with invertase, the products are D-fructose and a reducing disaccharide called melibiose. Raffinose is unaffected by treatment with a-galactosidase, but an α -galactosidase hydrolyzes it to D-galactose and sucrose. When raffinose is treated with dimethyl sulfate and base followed by hydrolysis, the products are 2,3,4-tri-O-methylglucose, 1,3,4,6-tetra-O-methylfructose, and 2,3,4,6-tetra-O-methylgalactose. Determine the complete structures of raffinose and melibiose and give a systematic name for melibiose.

Short Answer

Expert verified

The systematic name for melibiose is 6-O-(α -D-galactopyranosyl)-D-glucopyranose.

Step by step solution

01

Raffinose to melibiose conversion:

Raffinose is a trisaccharide (C18H32O16), and when it is treated with invertase, it gives products D-fructose and disaccharide melibiose which is reducing in nature. In raffinose, glucose acts as a monosaccharide bridge between galactose and fructose sugar.

It has both alpha and beta-glycosidic bonds. Raffinose sugar is not digestible by humans.

02

Systematic name for melibiose:

Melibiose is a reducing dissacharide. Disaccharides are named as glycosyl glycosides, means glycosyl sugar is named first followed by glycoside or glycose sugar. The glycosidic linkage present is named in the bracket before naming the sugar. Alpha linkage is present in melibiose thus, the systematic name for melibiose is 6-O-(α -D-galactopyranosyl)-D-glucopyranose.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Trehalose is a nonreducing disaccharide (C12H22O11) isolated from the poisonous mushroom Amanita muscaria. Treatment with an α -glucosidase converts trehalose to two molecules of glucose, but no reaction occurs when trehalose is treated with a β -glucosidase. When trehalose is methylated by dimethyl sulfate in mild base and then hydrolyzed, the only product is 2,3,4,6-tetra-O-methylglucose. Propose a complete structure and systematic name for trehalose.

Draw the structure of the individual mutarotating α and β anomers of maltose.

Which of the following sugars are reducing sugars? Comment on the common name sucrose for table sugar.

(a) methylαDgalactopyranoside (b) βLidopyranose (an aldohexose)

(c) αDallopyranose (d) βLribofuranoside

(e) (f)

An important protecting group developed specifically for polyhydroxy compounds like nucleosides is the tetraisopropyl-disiloxanyl group, abbreviated TIPDS, that can protect two alcohol groups in a molecule.

(a) The TIPDS group is somewhat hindered around the Siatoms by the isopropyl groups. Which OHis more likely to react first with TIPDS chloride? Show the product with the TIPDS group on one oxygen.

(b) Once the TIPDS group is attached at the first oxygen, it reaches around to the next closest oxygen. Show the final product with two oxygens protected.

(c) The unprotected hydroxy group can now undergo reactions without affecting the protected oxygens. Show the product after the protected nucleoside from (b) is treated with tosyl chloride and pyridine, followed by NaBr, ending with deprotection with Bu4NF.

Question: Exposure to nitrous acid (see Section 19-16), sometimes found in cells, can convert cytosine to uracil.

  1. Propose a mechanism for this conversion.
  2. Explain how this conversion would be mutagenic upon replication.
  3. DNA generally includes thymine, rather than uracil(found in RNA). Based on this fact, explain why the nitrous acid-induced mutation of cytosine to uracil is more easily repaired in DNA than it is in RNA.
See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free