Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Does lactose mutarotate? Is it a reducing sugar? Explain. Draw the two anomeric forms of lactose.

Short Answer

Expert verified

Lactose can mutarotate since it has free anomeric end which is shown by the figure below.

Free anomeric end which is able to mutarotate.

The two anomeric forms of lactose (α and β) are shown below.

α anomer

β anomer

Step by step solution

01

A concept:

Lactose can be obtained commercially from cow’s milk after the removal of emulsified fat and casein. Hydrolysis of lactose with dilute acids forms an equimolar mixture of D-glucose and D-galactose which means that the lactose molecule is made up of one unit each of D-glucose and D-galactose.

02

Lactose mutarotate or not:

Lactose is a reducing sugar since it has only one of its two anomeric carbon atoms involved in the glycosidic bond. This means that lactose can be converted to an open chain form with an aldehyde (-CHO) group.

Lactose can mutarotate since it has free anomeric end which is shown by the figure below.

Free anomeric end which is able to mutarotate.

The two anomeric forms of lactose (α and β) are shown below.

α anomer

β anomer

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Treatment of either anomer of fructose with excess ethanol in the presence of a trace of HCI gives a mixture of the α and β anomers of ethyl-D-fructofuranoside. Draw the starting materials, reagents, and products for this reaction. Circle the aglycone in each product.

H. G. Khorana won the Nobel Prize in Medicine in 1968 for developing the synthesis of DNA and RNA and for helping to unravel the genetic code. Part of the chemistry he developed was the use of selective protecting groups for the 5′ OH group of nucleosides.

The trityl ether derivative of just the 5′ OH group is obtained by reaction of the nucleoside with trityl chloride, MMT chloride, or DMT chloride and a base like Et3N. The trityl ether derivative can be removed in dilute aqueous acid. DMT derivatives hydrolyze fastest, followed by MMT derivatives, and trityl derivatives slowest.

(a) Draw the product with the trityl derivative on the 5′ oxygen.

(b) Explain why the trityl derivative is selective for the 5′ OH group. Why doesn’t it react at 2′ or 3′? (c) Why is the DMT group easiest to remove under dilute acid conditions? Why does the solution instantly turn orange when acid is added to a DMT derivative?

When the gum of the shrub Sterculia setigera is subjected to acidic hydrolysis, one of the water-soluble components of the hydrolysate is found to be tagatose. The following information is known about tagatose:

(1) Molecular formula C6H12O6

(2) Undergoes mutarotation.

(3) Does not react with bromine water.

(4) Reduces Tollens reagent to give d-galactonic acid and d-talonic acid.

(5) Methylation of tagatose (using excess CH3 I and Ag2O) followed by acidic hydrolysis gives 1,3,4,5-tetra-O-methyltagatose.

(a) Draw a Fischer projection structure for the open-chain form of tagatose.

(b) Draw the most stable conformation of the most stable cyclic hemiacetal form of tagatose.

Draw the structure of the individual mutarotating α and β anomers of maltose.

Draw the following sugar derivatives.

  1. ethyl-β-D-glucopyranoside
  2. 2,3,4,6-tetra-O-ethyl-D-mannopyranose
  3. 1,3,6-tri-O-ethyl-D-fructofuranose
  4. Ethyl-2,3,4,6-tetra-O-methyl-β-D-galactopyranoside
See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free