Chapter 26: Problem 27
Proteins can be cleaved specifically at the amide bond on the carboxyl side of methionine residues by reaction with cyanogen bromide, \(\mathrm{BrC}=\mathrm{N}\). The reaction occurs in several steps: (a) The first step is a nucleophilic substitution reaction of the sulfur on the methionine side chain with BrCN to give a cyanosulfonium ion, \(\left[\mathrm{R}_{2} \mathrm{SCN}\right]^{+} .\) Show the structure of the product, and propose a mechanism for the reaction. (b) The second step is an internal \(S_{N}^{2}\) reaction, with the carbonyl oxygen of the methionine residue displacing the positively charged sulfur leaving group and forming a five-membered ring product. Show the structure of the product and the mechanism of its formation. (c) The third step is a hydrolysis reaction to split the peptide chain. The carboxyl group of the former methionine residue is now part of a lactone (cyclic ester) ring. Show the structure of the lactone product and the mechanism of its formation. (d) The final step is a hydrolysis of the lactone to give the product shown. Show the mechanism of the reaction.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.