Chapter 24: Problem 38
Vancomycin is an important antibiotic. It is isolated from the bacterium Streptomyces orientalis and functions by inhibiting bacterial mucopeptide synthesis. It is a last line of defense against the resistant Staph organisms that are now common in hospitals. In 1999, Professor Dale Boger (The Scripps Research Institute) reported a synthesis of vancomycin aglycon (aglycon = lacking a sugar) involving the following steps, among others. Compound (I) was prepared from simple starting materials by a series of steps involving forming amide bonds. (a) Suggest reasonable precursors and show how the bonds could be formed (the actual reagents used have not been introduced, but they work in a similar way to those you know). (b) Give reagents for this reaction and suggest the mechanism. One of the interesting features of this synthesis is that ring \(C\) in compound (II) (and subsequent compounds in this synthesis) has extremely hindered rotation. As a result, compound (II) exists as two atropisomers (Section 3.2) that are interconverted only at \(140^{\circ} \mathrm{C}\). (c) Show these two isomers. (II) was then converted to (III). (d) Suggest reagents to accomplish this transformation. Compound (III) was then converted to (IV). (e) Suggest reagents and the ring A fragment that could be used for this reaction. Closure of an amide link between the amine on ring A (after removal of the protecting group) and the carbomethoxy group above it led to a precursor of vancomycin. (f) Show the ring closure reaction of the deprotected free amino group and its mechanism. Another interesting feature of this synthesis is that rings \(A\) and \(B\) also form atropisomers. These can be converted into a \(3: 1\) mixture of the desired and undesired atropisomers on heating at \(120^{\circ} \mathrm{C}\). (g) Draw these atropisomers and show that only one can be converted to vancomycin. The synthesis of the aglycon was completed by functional manipulation and addition of ring \(\mathrm{E}\) by chemistry similar to that detailed earlier. Yet, another set of atropisomers (this time of ring E) was formed! However, this one was more easily equilibrated than the others; model studies had shown that the activation barrier for this set of atropisomers should be lower than that of the others.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.