Chapter 13: Problem 8
Explain how to distinguish between the members of each pair of constitutional isomers based on the number of signals in the proton-decoupled \({ }^{13} \mathrm{C}\)-NMR spectrum of each member.
Chapter 13: Problem 8
Explain how to distinguish between the members of each pair of constitutional isomers based on the number of signals in the proton-decoupled \({ }^{13} \mathrm{C}\)-NMR spectrum of each member.
All the tools & learning materials you need for study success - in one app.
Get started for freeFollowing is a \({ }^{1} \mathrm{H}\)-NMR spectrum of 2 -butanol. Explain why the \(\mathrm{CH}_{2}\) protons appear as a complex multiplet rather than as a simple quintet.
The \({ }^{1} \mathrm{H}-\mathrm{NMR}\) spectrum of compound \(\mathrm{R}_{r} \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}\), consists of two signals: \(\delta 1.1\) (doublet) and \(\delta 3.6\) (septet) in the ratio 6:1. Propose a structural formula for compound \(R\) consistent with this information.
Complete the following table. Which nucleus requires the least energy to flip its spin at this applied field? Which nucleus requires the most energy? $$ \begin{array}{|c|c|c|c|} \hline \text { Nucleus } & \begin{array}{c} \text { Applied Field } \\ \text { (tesla, T) } \end{array} & \begin{array}{c} \text { Radio Frequency } \\ (\mathbf{M H z}) \end{array} & \text { Energy (J/mol) } \\ \hline{ }^{1} \mathrm{H} & 7.05 & 300 & \\ \hline{ }^{13} \mathrm{C} & 7.05 & 75.5 & \\ \hline{ }^{19} \mathrm{~F} & 7.05 & 282 & \\ \hline \end{array} $$
Write structural formulas for the following compounds. \(\delta 2.5(\mathrm{~d}, 3 \mathrm{H})\) and \(5.9(q, 1 \mathrm{H})\) \(\delta 1.60(\mathrm{~d}, 3 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{t}, 2 \mathrm{H})\), and \(4.27(\mathrm{~m}, 1 \mathrm{H})\) \(83.6(\mathrm{~s}, 8 \mathrm{H})\) \(\delta 1.0(\mathrm{t}, 3 \mathrm{H}), 2.1(\mathrm{~s}, 3 \mathrm{H})\), and \(2.4\) (quartet, 2H) \(\delta 1.2(\mathrm{t}, 3 \mathrm{H}), 2.1(\mathrm{~s}, 3 \mathrm{H})\), and \(4.1\) (quartet, \(2 \mathrm{H})\); contains an ester \(\delta 1.2(\mathrm{t}, 3 \mathrm{H}), 2.3\) (quartet, \(2 \mathrm{H})\), and \(3.6(\mathrm{~s}, 3 \mathrm{H})\); contains an ester \(\delta 1.1(\mathrm{~d}, 6 \mathrm{H}), 1.9(\mathrm{~m}, 1 \mathrm{H})\), and \(3.4(\mathrm{~d}, 2 \mathrm{H})\) \(\delta 1.5(\mathrm{~s}, 9 \mathrm{H})\) and \(2.0(\mathrm{~s}, 3 \mathrm{H})\) \(\delta 0.9(\mathrm{t}, 6 \mathrm{H}), 1.6(\) sextet, \(4 \mathrm{H})\), and \(2.4(\mathrm{t}, 4 \mathrm{H})\) \(\delta 1.2(\mathrm{~d}, 6 \mathrm{H}), 2.0(\mathrm{~s}, 3 \mathrm{H})\), and \(5.0\) (septet, 1H) \(\delta 1.1(\mathrm{~s}, 9 \mathrm{H})\) and \(3.2(\mathrm{~s}, 2 \mathrm{H})\) \(\delta 1.1(\mathrm{~s}, 9 \mathrm{H})\) and \(1.6(\mathrm{~s}, 6 \mathrm{H})\) (a) \(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}\) : (b) \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}\) : (c) \(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Br}_{4}\) : (d) \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\) : (e) \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\) : (f) \(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\) = (g) \(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\) : (h) \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\) = (i) \(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}\) : (j) \(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}=\) (k) \(\mathrm{C}_{s} \mathrm{H}_{11} \mathrm{Br}\) : (l) \(\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Cl}\)
State the number of sets of equivalent hydrogens in each compound and the number of hydrogens in each set. (a) 3-Methylpentane (b) \(2,2,4\)-Trimethylpentane
What do you think about this solution?
We value your feedback to improve our textbook solutions.