Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Arrange the compounds in each set in the order of increasing boiling point. (a) \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{COOH}\) \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CHO}\) \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \mathrm{OH}\) (b) CCC(=O)O CCCCO CCOCC

Short Answer

Expert verified
Question: Arrange the following compounds in order of increasing boiling points: a) Heptanal, 1-heptanol, and hexanoic acid b) Ether, 1-butanol, and propanoic acid Answer: a) Heptanal < 1-heptanol < Hexanoic acid b) Ether < 1-butanol < Propanoic acid

Step by step solution

01

Set (a) - Analyzing Intermolecular Forces

1. Hexanoic acid has a carboxylic acid group, which can form hydrogen bonds due to its -OH group. 2. Heptanal has an aldehyde group, which has dipole-dipole interactions because of the polarized C=O bond. 3. 1-heptanol has an alcohol group, which can form hydrogen bonds due to its -OH group.
02

Set (a) - Comparing Boiling Points

All three compounds have relatively equal sizes and similar van der Waals forces. However, both hexanoic acid and 1-heptanol can form hydrogen bonds, which are stronger than heptanal's dipole-dipole interactions. Therefore, the order of increasing boiling points for set (a) is: Heptanal < 1-heptanol < Hexanoic acid
03

Set (b) - Analyzing Intermolecular Forces

1. Propanoic acid has a carboxylic acid group, which can form hydrogen bonds due to its -OH group. 2. 1-butanol has an alcohol group, which can form hydrogen bonds due to its -OH group. 3. Ether has an ether group, which has dipole-dipole interactions because of the polarized C-O bond.
04

Set (b) - Comparing Boiling Points

Ether has weaker dipole-dipole interactions compared to the hydrogen bonding in propanoic acid and 1-butanol. Between propanoic acid and 1-butanol, propanoic acid has a more polarized functional group (C=O) that contributes to stronger hydrogen bonding. Therefore, the order of increasing boiling points for set (b) is: Ether < 1-butanol < Propanoic acid

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Given here are \({ }^{1} \mathrm{H}\)-NMR and \({ }^{13} \mathrm{C}-\mathrm{NMR}\) spectral data for nine compounds. Each compound shows strong absorption between 1720 and \(1700 \mathrm{~cm}^{-1}\) and strong, broad absorption over the region \(2500-3300 \mathrm{~cm}^{-1}\). Propose a structural formula for each compound. Refer to Appendices 4,5 , and 6 for spectral correlation tables. $$ \begin{aligned} &\text { (a) } \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}\\\ &\begin{array}{|cc|} \hline{ }^{1} H-N M R & { }^{13} \text { C-NMR } \\ \hline 0.94(\mathrm{t}, 3 \mathrm{H}) & 180.71 \\ 1.39(\mathrm{~m}, 2 \mathrm{H}) & 33.89 \\ 1.62(\mathrm{~m}, 2 \mathrm{H}) & 26.76 \\ 2.35(\mathrm{t}, 2 \mathrm{H}) & 22.21 \\ 12.0(\mathrm{~s}, 1 \mathrm{H}) & 13.69 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (b) } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\\\ &\begin{array}{|cc|} \hline{ }^{1} \mathrm{H}-\mathrm{NMR} & { }^{13} \mathrm{C}-\mathrm{NMR} \\ \hline 1.08(\mathrm{~s}, 9 \mathrm{H}) & 179.29 \\ 2.23(\mathrm{~s}, 2 \mathrm{H}) & 47.82 \\ 12.1(\mathrm{~s}, 1 \mathrm{H}) & 30.62 \\ & 29.57 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (c) } \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{4}\\\ &\begin{array}{|cc|} \hline{ }^{1} H-N M R & { }^{13} \text { C-NMR } \\ \hline 0.93(\mathrm{t}, 3 \mathrm{H}) & 170.94 \\ 1.80(\mathrm{~m}, 2 \mathrm{H}) & 53.28 \\ 3.10(\mathrm{t}, 1 \mathrm{H}) & 21.90 \\ 12.7(\mathrm{~s}, 2 \mathrm{H}) & 11.81 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (d) } \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{4}\\\ &\begin{array}{|cc|} \hline{ }^{1} \text { H-NMR } & { }^{13} \mathrm{C}-\mathrm{NMR} \\ \hline 1.29(\mathrm{~s}, 6 \mathrm{H}) & 174.01 \\ 12.8(\mathrm{~s}, 2 \mathrm{H}) & 48.77 \\ & 22.56 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (e) } \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\\\ &\begin{array}{|cc|} \hline{ }^{1} H-N M R & { }^{13} \text { C-NMR } \\ \hline 1.91(\mathrm{~d}, 3 \mathrm{H}) & 172.26 \\ 5.86(\mathrm{~d}, 1 \mathrm{H}) & 147.53 \\ 7.10(\mathrm{~m}, 1 \mathrm{H}) & 122.24 \\ 12.4(\mathrm{~s}, 1 \mathrm{H}) & 18.11 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (f) } \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{2}\\\ &\begin{array}{|cc|} \hline{ }^{1} \mathrm{H}-\mathrm{NMR} & { }^{13} \mathrm{C}-\mathrm{NMR} \\ \hline 2.34(\mathrm{~s}, 3 \mathrm{H}) & 171.82 \\ 11.3(\mathrm{~s}, 1 \mathrm{H}) & 79.36 \\ & 34.02 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (g) } \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}\\\ &\begin{array}{|cr|} \hline{ }^{1} \mathrm{H}-\mathrm{NMR} & { }^{13} \mathrm{C}-\mathrm{NMR} \\ \hline 1.42(\mathrm{~s}, 6 \mathrm{H}) & 180.15 \\ 6.10(\mathrm{~s}, 1 \mathrm{H}) & 77.78 \\ 12.4(\mathrm{~s}, 1 \mathrm{H}) & 51.88 \\ & 20.71 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (h) } \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{BrO}_{2}\\\ &\begin{array}{|cr|} \hline \text { 1H-NMR } & { }^{13} \text { C-NMR } \\ \hline 0.97(\mathrm{t}, 3 \mathrm{H}) & 176.36 \\ 1.50(\mathrm{~m}, 2 \mathrm{H}) & 45.08 \\ 2.05(\mathrm{~m}, 2 \mathrm{H}) & 36.49 \\ 4.25(\mathrm{t}, 1 \mathrm{H}) & 20.48 \\ 12.1(\mathrm{~s}, 1 \mathrm{H}) & 13.24 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (i) } \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}\\\ &\begin{array}{|cc|} \hline{ }^{1} H-N M R & { }^{13} \text { C-NMR } \\ \hline 2.62(\mathrm{t}, 2 \mathrm{H}) & 177.33 \\ 3.38(\mathrm{~s}, 3 \mathrm{H}) & 67.55 \\ 3.68(\mathrm{~s}, 2 \mathrm{H}) & 58.72 \\ 11.5(\mathrm{~s}, 1 \mathrm{H}) & 34.75 \\ \hline \end{array} \end{aligned} $$

When 4-hydroxybutanoic acid is treated with an acid catalyst, it forms a lactone (a cyclic ester). Draw the structural formula of this lactone and propose a mechanism for its formation.

Low-molecular-weight dicarboxylic acids normally exhibit two different \(\mathrm{p} K_{\mathrm{a}}\) values. Ionization of the first carboxyl group is easier than the second. This effect diminishes with molecular size, and for adipic acid and longer chain dicarboxylic acids, the two acid ionization constants differ by about one \(\mathrm{p} K\) unit. $$ \begin{array}{|llll|} \hline \text { Dicarboxylic Acid } & \text { Structural Formula } & \mathrm{p} \kappa_{\mathrm{a} 1} & \mathrm{p} K_{\mathrm{a} 2} \\ \hline \text { Oxalic } & \mathrm{HOOCCOOH} & 1.23 & 4.19 \\ \text { Malonic } & \mathrm{HOOCCH}{ }_{2} \mathrm{COOH} & 2.83 & 5.69 \\ \text { Succinic } & \mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH} & 4.16 & 5.61 \\ \text { Glutaric } & \mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH} & 4.31 & 5.41 \\ \text { Adipic } & \mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH} & 4.43 & 5.41 \\ \hline \end{array} $$ Why do the two \(\mathrm{p} K_{\mathrm{a}}\) values differ more for the shorter chain dicarboxylic acids than for the longer chain dicarboxylic acids?

Write the products of the following sequences of reactions. Refer to your roadmaps to see how the combined reactions allow you to "navigate" between the different functional groups. Note that you will need both your old Chapters 6-11 roadmap and your new Chapters 15-17 roadmap for these. (a) 1\. NBS A haloarene (b) 2\. Mg, ether 3\. \(\mathrm{CO}_{2}\) \(\begin{array}{ll}\text { An alkene } & \text { 4. } \mathrm{HCA}, \mathrm{H}_{2} \mathrm{O} \\ & \text { 5. } \mathrm{CH}_{2} \mathrm{~N}_{2} \\\ & \text { 6. } \mathrm{CPBA}\end{array}\) (c) O=C(O)C1CCCCC1 (d)

Select the stronger acid in each set. (a) Phenol \(\left(\mathrm{p} K_{\mathrm{a}} 9.95\right)\) and benzoic acid \(\left(\mathrm{p} K_{\mathrm{a}} 4.19\right)\) (b) Lactic acid \(\left(K_{\mathrm{a}} 8.4 \times 10^{-4}\right)\) and ascorbic acid \(\left(K_{\mathrm{a}} 7.9 \times 10^{-5}\right)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free