Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show how to prepare pentanoic acid from each compound. (a) 1-Pentanol (b) Pentanal (c) 1-Pentene (d) 1-Butanol (e) 1-Bromopropane (f) 1-Hexene

Short Answer

Expert verified
Answer: Pentanoic acid can be prepared from different starting compounds using a series of reactions. Some examples include: a) 1-Pentanol: The alcohol can be oxidized to pentanoic acid using potassium dichromate and sulfuric acid. b) Pentanal: Oxidize the aldehyde to pentanoic acid using potassium dichromate and sulfuric acid. c) 1-Pentene: Convert it to 1-pentanol using hydroboration-oxidation, followed by oxidation to pentanoic acid. d) 1-Butanol: Convert to 1-bromobutane, perform a Grignard reaction with magnesium and carbon dioxide, and hydrolyze the Grignard carboxylate to form pentanoic acid. e) 1-Bromopropane: Perform two Grignard reactions with magnesium, ethylene oxide, and carbon dioxide, followed by hydrolysis to obtain pentanoic acid. f) 1-Hexene: Convert to 1-bromohexane, 1-pentanone via nitrile hydrolysis, and finally to pentanoic acid using oxidative cleavage with potassium permanganate.

Step by step solution

01

(a) Conversion of 1-Pentanol to Pentanoic Acid

To convert 1-pentanol (C5H11OH) to pentanoic acid (C5H10O2), we can perform an oxidation reaction using potassium dichromate (K2Cr2O7) as the oxidizing agent in the presence of sulfuric acid (H2SO4). The reaction is as follows: C5H11OH + K2Cr2O7 + H2SO4 → C5H10O2
02

(b) Conversion of Pentanal to Pentanoic Acid

To convert pentanal (C5H10O) to pentanoic acid (C5H10O2), we can again perform an oxidation reaction using potassium dichromate (K2Cr2O7) as the oxidizing agent in the presence of sulfuric acid (H2SO4). The reaction can be written as: C5H10O + K2Cr2O7 + H2SO4 → C5H10O2
03

(c) Conversion of 1-Pentene to Pentanoic Acid

To convert 1-pentene (C5H10) to pentanoic acid (C5H10O2), the following sequence of reactions can be performed: 1. Convert 1-pentene to 1-pentanol by hydroboration-oxidation using borane (BH3) in tetrahydrofuran (THF) and hydrogen peroxide (H2O2) in the presence of sodium hydroxide (NaOH): C5H10 + BH3/THF + H2O2/NaOH → C5H11OH 2. Convert 1-pentanol to pentanoic acid as described in step (a).
04

(d) Conversion of 1-Butanol to Pentanoic Acid

To convert 1-butanol (C4H9OH) to pentanoic acid (C5H10O2), we first need to convert the alcohol to an alkyl halide, add a carbon atom, and then react it with a strong oxidizing agent as follows: 1. Convert 1-butanol to 1-bromobutane using hydrochloric acid (HCl): C4H9OH + HCl → C4H9Br + H2O 2. Perform a Grignard reaction with magnesium and carbon dioxide: C4H9Br + Mg → C4H9MgBr; C4H9MgBr + CO2 → C5H9COOMgBr 3. Hydrolyze the Grignard carboxylate to form pentanoic acid: C5H9COOMgBr + H3O+ → C5H10O2 + MgBr(OH)
05

(e) Conversion of 1-Bromopropane to Pentanoic Acid

To convert 1-bromopropane (C3H7Br) to pentanoic acid (C5H10O2), we need to add two carbon atoms and convert the bromide to the carboxylic acid functional group: 1. Perform two consecutive Grignard reactions with magnesium, ethylene oxide, and then carbon dioxide: C3H7Br + Mg → C3H7MgBr; C3H7MgBr + C2H4O → C5H11OMgBr; C5H11OMgBr + CO2 → C5H11COOMgBr 2. Hydrolyze the Grignard carboxylate to form pentanoic acid: C5H11COOMgBr + H3O+ → C5H10O2 + MgBr(OH)
06

(f) Conversion of 1-Hexene to Pentanoic Acid

To convert 1-hexene (C6H12) to pentanoic acid (C5H10O2), you can follow these steps: 1. Convert 1-hexene to 1-bromohexane via hydrohalogenation using bromine (Br2): C6H12 + Br2 → C6H13Br 2. Convert 1-bromohexane to 1-pentanone via nitrile hydrolysis: C6H13Br + NaN3 → C6H13N3; C6H13N3 + 2H2O + H3O+ → C5H10O + NH4+ 3. Convert 1-pentanone to pentanoic acid using an oxidative cleavage: C5H10O + KMnO4 + H3O+ → C5H10O2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using your roadmaps as a guide, show how to convert 5 -chloro-2-pentanone and carbon dioxide into racemic tetrahydro-6-methyl-2-pyranone. You must use 5-chloro2-pentanone and carbon dioxide as the source of all carbon atoms in the racemic target molecule. Show all reagents and all molecules synthesized along the way.

Excess ascorbic acid is excreted in the urine, the \(\mathrm{pH}\) of which is normally in the range 4.8-8.4. What form of ascorbic acid would you expect to be present in urine of \(\mathrm{pH} 8.4\) free ascorbic acid or ascorbate anion? Explain.

Potassium sorbate is added as a preservative to certain foods to prevent bacteria and molds from causing food spoilage and to extend the foods' shelf life. The IUPAC name of potassium sorbate is potassium \((2 E, 4 E)-2,4\)-hexadienoate. Draw a structural formula for potassium sorbate.

Draw a structural formula for each salt. (a) Sodium benzoate (b) Lithium acetate (c) Ammonium acetate (d) Disodium adipate (e) Sodium salicylate (f) Calcium butanoate

Given here are \({ }^{1} \mathrm{H}-\mathrm{NMR}\) and \({ }^{13} \mathrm{C}\)-NMR spectral data for nine compounds. Each compound shows strong absorption between 1720 and \(1700 \mathrm{~cm}^{-1}\) and strong, broad absorption over the region \(2500-3300 \mathrm{~cm}^{-1}\). Propose a structural formula for each compound. Refer to Appendices 4,5, and 6 for spectral correlation tables. (a) \(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}\) $$ \begin{array}{|cc|} \hline{ }^{1} \text { H-NMR } & { }^{13} \text { C-NMR } \\ \hline 0.94(\mathrm{t}, 3 \mathrm{H}) & 180.71 \\ 1.39(\mathrm{~m}, 2 \mathrm{H}) & 33.89 \\ 1.62(\mathrm{~m}, 2 \mathrm{H}) & 26.76 \\ 2.35(\mathrm{t}, 2 \mathrm{H}) & 22.21 \\ 12.0(\mathrm{~s}, 1 \mathrm{H}) & 13.69 \\ \hline \end{array} $$ $$ \begin{aligned} &\text { (b) } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}\\\ &\begin{array}{|cr|} \hline{ }^{1} H-N M R & { }^{13} C-N M R \\ \hline 1.08(\mathrm{~s}, 9 \mathrm{H}) & 179.29 \\ 2.23(\mathrm{~s}, 2 \mathrm{H}) & 47.82 \\ 12.1(\mathrm{~s}, 1 \mathrm{H}) & 30.62 \\ & 29.57 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (c) } \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{4}\\\ &\begin{array}{|cc|} \hline{ }^{1} \text { H-NMR } & { }^{13} \mathrm{C}-\mathrm{NMR} \\ \hline 0.93(\mathrm{t}, 3 \mathrm{H}) & 170.94 \\ 1.80(\mathrm{~m}, 2 \mathrm{H}) & 53.28 \\ 3.10(\mathrm{t}, 1 \mathrm{H}) & 21.90 \\ 12.7(\mathrm{~s}, 2 \mathrm{H}) & 11.81 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (d) } \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{4}\\\ &\begin{array}{|cc|} \hline{ }^{1} \mathrm{H}-\mathrm{NMR} & { }^{13} \mathrm{C}-\mathrm{NMR} \\ \hline 1.29(\mathrm{~s}, 6 \mathrm{H}) & 174.01 \\ 12.8(\mathrm{~s}, 2 \mathrm{H}) & 48.77 \\ & 22.56 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (e) } \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\\\ &\begin{array}{|cc|} \hline{ }^{1} \mathrm{H}-\mathrm{NMR} & { }^{13} \mathrm{C}-\mathrm{NMR} \\ \hline 1.91(\mathrm{~d}, 3 \mathrm{H}) & 172.26 \\ 5.86(\mathrm{~d}, 1 \mathrm{H}) & 147.53 \\ 7.10(\mathrm{~m}, 1 \mathrm{H}) & 122.24 \\ 12.4(\mathrm{~s}, 1 \mathrm{H}) & 18.11 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (f) } \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{2}\\\ &\begin{array}{|cc|} \hline{ }^{1} \text { H-NMR } & { }^{13} \mathrm{C}-\mathrm{NMR} \\ \hline 2.34(\mathrm{~s}, 3 \mathrm{H}) & 171.82 \\ 11.3(\mathrm{~s}, 1 \mathrm{H}) & 79.36 \\ & 34.02 \\ & \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (g) } \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}\\\ &\begin{array}{|cr|} \hline{ }^{1} \text { H-NMR } & { }^{13} \text { C-NMR } \\ \hline 1.42(\mathrm{~s}, 6 \mathrm{H}) & 180.15 \\ 6.10(\mathrm{~s}, 1 \mathrm{H}) & 77.78 \\ 12.4(\mathrm{~s}, 1 \mathrm{H}) & 51.88 \\ & 20.71 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (h) } \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{BrO}_{2}\\\ &\begin{array}{|cr|} \hline{ }^{1} H-N M R & { }^{13} \text { C-NMR } \\ \hline 0.97(\mathrm{t}, 3 \mathrm{H}) & 176.36 \\ 1.50(\mathrm{~m}, 2 \mathrm{H}) & 45.08 \\ 2.05(\mathrm{~m}, 2 \mathrm{H}) & 36.49 \\ 4.25(\mathrm{t}, 1 \mathrm{H}) & 20.48 \\ 12.1(\mathrm{~s}, 1 \mathrm{H}) & 13.24 \\ \hline \end{array} \end{aligned} $$ $$ \begin{aligned} &\text { (i) } \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}\\\ &\begin{array}{|cc|} \hline{ }^{1} \mathrm{H}-\mathrm{NMR} & { }^{13} \mathrm{C}-\mathrm{NMR} \\ \hline 2.62(\mathrm{t}, 2 \mathrm{H}) & 177.33 \\ 3.38(\mathrm{~s}, 3 \mathrm{H}) & 67.55 \\ 3.68(\mathrm{~s}, 2 \mathrm{H}) & 58.72 \\ 11.5(\mathrm{~s}, 1 \mathrm{H}) & 34.75 \\ \hline \end{array} \end{aligned} $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free