Chapter 4: Problem 69
(a) trans-1, 2-Dimethylcyclohexane exists about \(99 \%\) in the diequatorial conformation; trans-1, 2-Dibromocyclohexane on the other hand, exists about equally in diequatorial and diaxial conformations. Furthermore, the fraction of the diaxial conformation decreases with increasing polarity of the solvent. How do you account for the contrast between the dimethyl and dibromo compounds? (b) If trans-3-cis-4-dibromo-tert-butylcyclohexane is subjected to prolonged heating, it is converted into an equilibrium mixture (about \(50: 50\) ) of itself and a diastereomer. What is the diastereomer likely to be? How do you account for the approximately equal stability of these two diastereomers? [Here, and in (c), consider the more stable conformation of each diastereomer to be the one with an equatorial tert-buty1 group]. (c) There, are two more diastereomeric 3,4 -dibromo tert-butylcyclohexanes. What are they? How do you account for the fact that neither is present to an appreciable extent in the equilibrium mixture?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.