Chapter 7: Problem 89
Consider the following reaction equilibrium: \(\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})\) Initially, 1 mole of \(\mathrm{N}_{2}\) and 3 mole of \(\mathrm{H}_{2}\) are taken in a 2 litre flask. At equilibrium state, if the number of union of \(\mathrm{N}_{2}\) in \(0.6\), what is the total number of moles of all gases present in the flask: (a) \(0.8\) (b) \(1.6\) (c) \(3.2\) (d) \(6.4\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.