Chapter 7: Problem 30
The equilibrium constant for the reactions are \(\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} ; \mathrm{K}_{1}\) \(\mathrm{II}_{2} \mathrm{PO}_{4} \rightleftharpoons \mathrm{II}^{+}+\mathrm{HPO}_{4}^{2} ; \mathrm{K}_{2}\) \(\mathrm{IIPO}_{4}^{2} \rightleftharpoons \mathrm{II}^{+}+\mathrm{PO}_{4}^{3} ; \mathrm{K}_{3}\) The equilibrium constant for \(\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons 3 \mathrm{H}^{\prime}+\mathrm{PO}_{4}^{3-}\) is (1) \(\mathrm{K}_{1} / \mathrm{K}_{2} \cdot \mathrm{K}_{3}\) (2) \(\mathrm{K}_{\mathrm{1}} \times \mathrm{K}_{2} \times \mathrm{K}_{3}\) (3) \(\mathrm{K}_{2} / \mathrm{K}_{1} \cdot \mathrm{K}_{3}\) (4) \(\mathrm{K}_{\mathrm{1}}+\mathrm{K}_{2}+\mathrm{K}_{3}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Equilibrium Constant
It is crucial for predicting the direction of the reaction and the concentrations of the involved species at equilibrium.
For a general reaction at equilibrium, \(\text{aA + bB} \rightleftharpoons \text{cC + dD}\), the expression for the equilibrium constant \(K_eq\) is: \[K_eq = \frac{[\text{C}]^c [\text{D}]^d}{[\text{A}]^a [\text{B}]^b}\text{.}\] Here, \([A], [B], [C], [D]\) are the concentrations of the reactants and products, and \(a, b, c, d\) are their respective coefficients in the balanced equation.
Higher values of \(K_eq\) indicate a greater amount of products at equilibrium, whereas lower values suggest more reactants.
Dissociation Reaction
For instance, when phosphoric acid (H₃PO₄) dissociates in water, it goes through several steps:
- The first dissociation: \[ \mathrm{H}_3\mathrm{PO}_4 \rightleftharpoons \mathrm{H}^+ + \mathrm{H}_2\mathrm{PO}_4^- \] with equilibrium constant \(K_1\).
- The second dissociation: \[ \mathrm{H}_2\mathrm{PO}_4^- \rightleftharpoons \mathrm{H}^+ + \mathrm{HPO}_4^{2-} \] with equilibrium constant \(K_2\).
- The third dissociation: \[ \mathrm{HPO}_4^{2-} \rightleftharpoons \mathrm{H}^+ + \mathrm{PO}_4^{3-} \] with equilibrium constant \(K_3\).
\[\mathrm{H}_3\mathrm{PO}_4 \rightleftharpoons 3\mathrm{H}^+ + \mathrm{PO}_4^{3-}\text{.}\] The overall equilibrium constant for the reaction is the product of the intermediate equilibrium constants: \[K = K_1 \times K_2 \times K_3\text{.}\]
Phosphoric Acid
It can donate three protons (H⁺ ions) in a stepwise manner:
- The first dissociation: \[\mathrm{H}_3\mathrm{PO}_4 \rightleftharpoons \mathrm{H}^+ + \mathrm{H}_2\mathrm{PO}_4^- \]
- The second dissociation: \[\mathrm{H}_2\mathrm{PO}_4^- \rightleftharpoons \mathrm{H}^+ + \mathrm{HPO}_4^{2-} \]
- The third dissociation: \[\mathrm{HPO}_4^{2-} \rightleftharpoons \mathrm{H}^+ + \mathrm{PO}_4^{3-} \]
The overall dissociation reaction can be expressed and has an equilibrium constant as \[\mathrm{H}_3\mathrm{PO}_4 \rightleftharpoons 3\mathrm{H}^+ + \mathrm{PO}_4^{3-} \quad \text{with} \quad K_{overall} = K_1 \times K_2 \times K_3\text{.}\]
Understanding these dissociation steps and their constants is essential in predicting the behavior of phosphoric acid in different chemical contexts.