Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(\Lambda\) is a weaker acid than \(\mathrm{B}\) if (1) \(\Lambda\) is more casily decomposed than \(\mathrm{B}\) when heated (2) \(\Lambda\) is not corrosive (3) \(\Lambda\) is less ionized than \(B\) when dissolved in a solvent (4) \(\Lambda\) is more ionized than \(B\) when dissolved in a solvent

Short Answer

Expert verified
Option 3: Λ is less ionized than B when dissolved in a solvent.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

- Define acidity in terms of ionization

A stronger acid is one that ionizes more completely in solution. Hence, a weaker acid is one that ionizes less.
02

- Identify the relevant condition

Look at the options provided. The condition related to ionization is the key factor to determine acidity strength.
03

- Compare ionization levels

Compare the options related to ionization. Option 3: \(\text{Λ is less ionized than B when dissolved in a solvent}\) fits our definition of a weaker acid.

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

headline of the respective core concept
Weak acids only partially ionize in water. This incomplete ionization means that only some of the acid molecules donate their protons to water. As a result, the concentration of hydrogen ions (H\( \mathrm{H}^+ \)) in the solution is low. Common examples of weak acids include acetic acid (found in vinegar) and citric acid (found in citrus fruits).
Weak acids are an important part of the exercise because \(\text{Λ is less ionized than B}\), indicating that Λ is a weaker acid. This partial ionization not only affects the strength of the acid but also its reaction with other substances, its pH, and its chemical behavior. Therefore, understanding weak acids helps you predict how they will behave in various chemical reactions.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The addition of \(\mathrm{NaCl}\) to \(\mathrm{AgCl}\) decreases the solubility of \(\mathrm{AgCl}\) because (1) solubility product decreases (2) due to the common ion effect of \(\mathrm{Cl}\) (3) solubility becomes unsaturated (4) solution becomes supersaturated

\(\mathrm{K}_{\mathrm{c}}\) for \(\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}\) is 10 at \(25^{\circ} \mathrm{C}\). If a con- tainer contains \(1,2,3,4\) moles per litre of \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and D, respectively at \(25^{\circ} \mathbf{C}\) the reaction shall (1) Procecd from left to right (2) Procecd from right to left (3) Be at cquilibrium (4) Nonc

Consider the following reactions (i) \(\mathrm{CO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-}\) (ii) \(\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}\) (iii) \(\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}\) (iv) \(\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}\) Which pair of reactions proves that water is amphoteric? (1) \(i\) and ii (2) ii and iii (3) iii and iv (4) i and iii

Which of the following mixture can act as a buffer solution? (1) I litre of \(0.2 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}+1\) litre of \(0.2 \mathrm{~N} \mathrm{NaOH}\) (2) I litre of \(0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}+1\) litre of \(0.2 \mathrm{~N} \mathrm{NaOH}\) (3) 1 litre of \(0.2 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}+1\) litre of \(0.1 \mathrm{~N} \mathrm{NaOH}\) (4) All the above

In water the acids \(\mathrm{HClO}_{4}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}\) and \(\mathrm{HNO}_{3}\) exhibit the same strength as they are completely ionized in water (a base). This is called .......... of the solvent water. (1) Strength (2) Capacity (3) Buffer effect (4) Lcvelling cffect

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free