Chapter 7: Problem 134
When equal volumes of the following solutions are mixed, precipitation of \(\mathrm{AgCl}\left(K_{\mathrm{pp}}=1.8 \times 10^{10}\right)\) will occur only with (1) \(10^{-4} \mathrm{M}\left(\mathrm{Ag}^{-}\right)\) and \(10^{-4} \mathrm{M}\left(\mathrm{Cl}^{-}\right)\) (2) \(10^{-5} \mathrm{M}\left(\Lambda \mathrm{g}^{-}\right)\) and \(10^{-5} \mathrm{M}\left(\mathrm{Cl}^{-}\right)\) (3) \(10^{-6} \mathrm{M}\left(\Lambda \mathrm{g}^{-}\right)\) and \(10^{-6} \mathrm{M}\left(\mathrm{Cl}^{-}\right)\) (4) \(10^{-10} \mathrm{M}\left(\Lambda \mathrm{g}^{-}\right)\) and \(10^{-10} \mathrm{M}\left(\mathrm{Cl}^{-}\right)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Precipitation Reactions
To determine whether a precipitate will form, we compare the ion product of the reacting ions in the solution with the solubility product constant (\( K_{\mathrm{sp}} \)) of the potential precipitate. If the ion product exceeds the \( K_{\mathrm{sp}} \), precipitation occurs.
Ion Product
During calculations, you must compare this value with the \( K_{\mathrm{sp}} \) of the substance. If the ion product exceeds the \( K_{\mathrm{sp}} \), a precipitate forms. Otherwise, the ions remain dissolved in the solution. This method allows chemists to predict and control the formation of precipitates in various reactions.
Ksp Calculation
To determine if \( \mathrm{AgCl} \) will precipitate out of a solution, you compare the calculated ion product to this value. For example, if \( [\mathrm{Ag}^+] = 10^{-4} \ \text{M} \) and \( [\mathrm{Cl}^-] = 10^{-4} \ \text{M} \), the ion product will be: \[ (10^{-4})(10^{-4}) = 10^{-8} \]
Since \( 10^{-8} \) is greater than \( 1.8 \times 10^{-10} \), precipitation will occur.
Solution Concentrations
- 10^{-4} \ \text{M} \left(\mathrm{Ag}^+\right) and 10^{-4} \ \text{M} \left(\mathrm{Cl}^-\right)
- 10^{-5} \ \text{M} \left(\mathrm{Ag}^+\right) and 10^{-5} \ \text{M} \left(\mathrm{Cl}^-\right)
- 10^{-6} \ \text{M} \left(\mathrm{Ag}^+\right) and 10^{-6} \ \text{M} \left(\mathrm{Cl}^-\right)
- 10^{-10} \ \text{M} \left(\mathrm{Ag}^+\right) and 10^{-10} \ \text{M} \left(\mathrm{Cl}^-\right)