Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 84

An aqucous solution of hydrogen sulphide shows the cquilibrium \(\mathrm{II}_{2} \mathrm{~S} \rightleftharpoons \mathrm{II}^{-} \mathrm{I} \mathrm{IIS}^{-}\) If dilute hydrochloric acid is added to an aqucous solution of hydrogen sulphide without any change in temperature, then (1) the equilibrium constant will change (2) the concentration of HS will increase (3) the concentration of nondissociated hydrogen sulphide will decrease (4) the concentration of HS will decrease

Problem 85

Oxidation of \(\mathrm{SO}_{2}\) to \(\mathrm{SO}_{3}\) by \(\mathrm{O}_{2}\) is an cxothermic reaction. The yicld of \(\mathrm{SO}_{3}\) will be maximum when(1) Temperature is increased and pressure is kept constant. (2) Temperature is reduced and pressure is increased. (3) Both temperature and pressure are increased. (4) Both temperature and pressure are reduced.

Problem 86

\begin{aligned} &\text { The hydrolysis constant of a salt of weak acid }\\\ &\left(K_{\mathrm{a}}=2 \times 10^{-6}\right) \text { and of a weak basc }\left(K_{\mathrm{b}}=5 \times 10^{-7}\right) \text { is } \end{aligned}(1) 10 (2) \(10^{2}\) (3) \(2 \times 10^{2}\) (4) \(5 \times 10^{3}\)

Problem 86

For which reaction high pressure and high temperature is helpful in obtaining a high cquilibrium yicld? (1) \(2 \mathrm{NF}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \quad 54.40 \mathrm{kcal}\) (2) \(\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{II}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NI}_{3}(\mathrm{~g})+22.08 \mathrm{kcal}\) (3) \(\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{ClO}_{3}(\mathrm{~g}) \quad 49.4 \mathrm{kcal}\) (4) \(2 \mathrm{Cl}_{2} \mathrm{O}_{7}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}_{2}(\mathrm{~g}) \times 7 \mathrm{O}_{2}(\mathrm{~g})+126.8 \mathrm{kcal}\)

Problem 87

The hydrolysis constant \(K_{h}\) of a salt of sodium hydroxidc and weak acid (IIX) if the \(K_{a}\) of the acid is \(5 \times 10^{-6}\) is (1) \(2 \times 10^{-8}\) (2) \(5 \times 10^{-6}\) (3) \(2.5 \times 10^{-7}\) (4) \(5 \times 10^{-9}\)

Problem 87

Which oxide of nitrogen is the most stable? (1) \(2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}(\mathrm{g}) \mathrm{k}=6.7 \times 10^{6} \mathrm{~mol}\) litre (2) \(2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \mathrm{k}=2.2 \times 10^{30} \mathrm{~mol}\) litre (3) \(2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \mathrm{k}=1.2 \times 10^{34}\) mol litre (4) \(2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \mathrm{k}=3.5 \times 10^{23}\) mol litre

Problem 90

In a vessel containing \(\mathrm{SO}_{3}, \mathrm{SO}_{2}\) and \(\mathrm{O}_{2}\) at equilibrium some helium gas is introduced so that the total pressure increases while temperature and volume remains constant. According to Le Chatelier's principle, the dissociation of \(\mathrm{SO}_{3}\) (1) increases (2) decreases (3) remains unaltered (4) changes unpredictably

Problem 92

The most important buffer in blood consists of (1) \(\mathrm{HCl}\) and \(\mathrm{Cl}\) (2) \(\mathrm{H}_{2} \mathrm{CO}_{3}\) and \(\mathrm{HCO}_{3}\) (3) \(\mathrm{H}_{2} \mathrm{CO}_{3}\) and \(\mathrm{Cl}\) (4) \(\mathrm{HCl}\) and \(\mathrm{HCO}_{3}\)

Problem 92

Which information can be obtained from Le Chatelier's principle? (1) Shift in equilibrium position on changing \(P, T\) and concentration (2) Dissociation constant of weak acid (3) Energy change in reaction (4) Equilibrium constant of a chemical reaction

Problem 94

\(\Lambda\) chemist who is concerned with large-scale manufacture of useful compounds is primarily intcrested in (1) minimizing the cncrgy consumption (2) maximizing the backward reaction (3) minimizing the reverse reaction (4) decrcasing the acidity of the product

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks