Chapter 1: Problem 11
The number of significant figures in \(\pi\) is (1) one (2) two (3) three (4) infinite
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 1: Problem 11
The number of significant figures in \(\pi\) is (1) one (2) two (3) three (4) infinite
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeElement \(\Lambda\) (atomic weight \(12.01)\) and element \(\mathrm{B}\) (atomic weight 16 ) combine to form a new substance \(\mathrm{X}\). If two moles of \(\mathrm{B}\) combines with one mole of \(\Lambda\), then the weight of one mole of \(\mathrm{X}\) is (1) \(28.01 \mathrm{~g}\) (2) \(44.01 \mathrm{~g}\) (3) \(40.02 \mathrm{~g}\) (4) \(56.02 \mathrm{~g}\)
One part of an clement \(\mathrm{X}\) combines with two parts of another clement \(\mathrm{Y}\). Six parts of the clement \(\mathrm{Z}\) combines with four parts of clement \(Y\). If \(X\) and \(Y\) combine together, the ratio of their weights will be governed by (1) Law of multiple proportions (2) Law of definite proportions (3) Law of reciprocal proportions (4) Law of conservation of mass
For the reaction \(\mathrm{A}+2 \mathrm{~B} \longrightarrow \mathrm{C}, 5\) moles of \(\mathrm{A}\) and 8 moles of B will produce (1) 5 moles of \(\mathrm{C}\) (2) 4 moles of \(\mathrm{C}\) (3) 8 moles of \(\mathrm{C}\) (4) 13 moles of \(\mathrm{C}\)
In a clinical laboratory, a sample of urine containing \(0.120 \mathrm{~g}\) of urea \(\mathrm{NH}_{2} \mathrm{CONH}_{2}\) (M. Wt. 60) was treated with excess of nitrous acid. The urea reacted according to the following equation \(\mathrm{NH}_{2} \mathrm{CONH}_{2}+2 \mathrm{HNO}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O}\) The gas formed was passed through aqueous sodium hydroxide and final volume is measured at STP. What was the volume? (1) \(89.6 \mathrm{cc}\) (2) \(179.2 \mathrm{cc}\) (3) \(44.8 \mathrm{cc}\) (4) \(22.4 \mathrm{cc}\)
Lactose commonly used as a binder in tablets has a molecular weight \(342 .\) What weight of \(\mathrm{CO}_{2}\) would be formed when \(1 / 12\) mole of this compound is burnt completely? \(\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} \longrightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}\right)\) \((1) 12 \mathrm{~g}\) (2) \(44 \mathrm{~g}\) (3) \(4.4 \mathrm{~g}\) (4) \(440 \mathrm{~g}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.