Problem 17
Sanger Sequencing Logic In the Sanger (dideoxy) method for DNA sequencing, researchers add a small amount of a dideoxynucleoside triphosphate, such as ddCTP, to the sequencing reaction along with a larger amount of the corresponding deoxynucleoside, such as dCTP. What result would researchers observe if they omitted dCTP from the sequencing reaction?
Problem 20
Preserving DNA in Bacterial Endospores Bacterial endospores form when the environment is no longer conducive to active cell metabolism. The soil bacterium Bacillus subtilis, for example, begins the process of sporulation when one or more nutrients are depleted. The end product is a small, metabolically dormant structure that can survive almost indefinitely with no detectable metabolism. Spores have mechanisms to prevent accumulation of potentially lethal mutations in their DNA over periods of dormancy that can exceed 1,000 years. \(B\). subtilis spores are much more resistant than are the organism's growing cells to heat, UV radiation, and oxidizing agents, all of which promote mutations. a. One factor that prevents potential DNA damage in spores is their greatly decreased water content. How would this affect some types of mutations? b. Endospores have a category of proteins called small acid-soluble proteins (SASPs) that bind to their DNA, preventing formation of cyclobutane-type dimers. What causes cyclobutane dimers, and why do bacterial endospores need mechanisms to prevent their formation?
Problem 22
The Structure of DNA Elucidation of the threedimensional structure of DNA helped researchers understand how this molecule conveys information that can be faithfully replicated from one generation to the next. To see the secondary structure of double-stranded DNA, go to the Protein Data Bank website (www.rcsb.org). Use the PDB identifiers provided in parts (a) and (b) below to retrieve the structure summary for a double-stranded DNA segment. View the 3D structure using JSmol. The viewer select menu is below the right corner of the image box. Once in JSmol, you will need to use both the display menus on the screen and the scripting controls in the JSmol menu. Access the JSmol menu by clicking on the JSmol logo in the lower right corner of the image screen. Refer to the JSmol help links as needed. a. Access PDB ID 141D, a highly conserved, repeated DNA sequence from the end of the genome of HIV-1 (the virus that causes AIDS). Set the Style to Ball and Stick. Then use the scripting controls to color by element (Color > Atoms > By Scheme > Element