Chapter 6: Problem 11
Applying the Michaelis-Menten Equation IV Researchers discover an enzyme that catalyzes the reaction \(\mathrm{X} \rightleftharpoons \mathrm{Y}\). They find that the \(K_{\mathrm{m}}\) for the substrate \(\mathrm{X}\) is \(4 \mu \mathrm{M}\), and the \(k_{\text {cat }}\) is \(20 \mathrm{~min}^{-1}\). a. In an experiment, \([\mathrm{X}]=6 \mathrm{mM}\), and \(V_{0}=480 \mathrm{nM} \mathrm{min}^{-1}\). What was the \(\left[\mathrm{E}_{\mathrm{t}}\right]\) used in the experiment? b. In another experiment, \(\left[\mathrm{E}_{\mathrm{t}}\right]=0.5 \mu \mathrm{M}\), and the measured \(V_{0}=5 \mu \mathrm{M} \mathrm{min}^{-1}\). What was the \([\mathrm{X}]\) used in the experiment? c. The researchers discover that compound \(Z\) is a very strong competitive inhibitor of the enzyme. In an experiment with the same \(\left[E_{t}\right]\) as in (a), but a different \([\mathrm{X}]\), they add an amount of \(\mathrm{Z}\) that produces an \(a\) of 10 and reduces \(V_{0}\) to \(240 \mathrm{nM} \mathrm{min}^{-1}\). What is the \([\mathrm{X}]\) in this experiment? d. Based on the kinetic parameters given, has this enzyme evolved to achieve catalytic perfection? Explain your answer briefly, using the kinetic parameter(s) that define catalytic perfection.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.