Chapter 5: Problem 3
The protein calcineurin binds to the protein calmodulin with an association rate of \(8.9 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) and an overall dissociation constant, \(K_{\mathrm{d}}\), of 10 \(\mathrm{n} \mathrm{M}\). Calculate the dissociation rate, \(k_{\mathrm{d}}\), including appropriate units.
Short Answer
Step by step solution
Understand the Relationship
Reorganize the Equation
Convert Units
Substitute Known Values
Calculate the Dissociation Rate
Evaluate Units and Result
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Biochemical Kinetics
To measure how proteins bind and separate, scientists often use experimental data. For instance, the association rate measures how fast two molecules bind, while the dissociation rate measures how fast the complex breaks apart. Together, these rates provide a comprehensive view of the dynamic nature of biological interactions.
Protein Interaction Analysis
Studying interactions involves a variety of techniques like surface plasmon resonance and mass spectrometry. These methods help quantify how tightly a protein binds to its partner, which is critical in drug design. By evaluating the strength and rate of these bindings, researchers can manipulate these interactions for therapeutic purposes. Ultimately, protein interaction analysis helps bridge the gap between molecular biology and medicine.
Association and Dissociation Constants
\( K_d \) is often used to describe a protein's affinity for a ligand. Lower \( K_d \) values suggest stronger binding, meaning the molecules are more stable together. The dissociation rate, \( k_d \), can be calculated using the formula \( K_d = \frac{k_d}{k_a} \). This calculation is vital in developing inhibitors or activators in drug therapy. Scientists can adjust these constants to control biological processes effectively.
Molecular Biology
At the heart of molecular biology is the study of macromolecules, including DNA, RNA, and proteins. Proteins, being the workhorses of the cell, are the primary targets in molecular biology studies. By understanding how proteins interact and their kinetics, researchers can elucidate the entire biochemistry of living organisms. Molecular biology has reshaped our comprehension of life and continues to be a cornerstone of modern biological research.