Chapter 2: Problem 20
a. In what pH range can glycine be used as an effective buffer due to its amino group? b. In a \(0.1 \mathrm{~m}\) solution of glycine at pH \(9.0\), what fraction of glycine has its amino group in the \(-\mathrm{NH}_{3}^{4}\) form? c. How much \(5 \mathrm{M}\) KOH must be added to \(1.0 \mathrm{~L}\) of \(0.1 \mathrm{M}\) glycine at pH \(9.0\) to bring its pII to exactly \(10.0 ?\) d. When 9996 of the glycine is in ?ts \(-\mathrm{NH}_{3}^{+}\)form, what is the numerical relation between the pH of the solution and the p \(K_{\mathrm{n}}\) of the amino group? Properties of a Buffer The amino acid glycine is often used as the main ingredient of a buffer in biochemical experiments. The amino group of glycine, which has a \(\mathrm{p} K_{\mathrm{n}}\) of \(9.6\), can exist either in the protonated form \(\left(-\mathrm{NH}_{3}^{+}\right)\)or as the free base \(\left(-\mathrm{NH}_{2}\right)\), because of the reversible equilibrium $$ \mathrm{F}-\mathrm{NH}_{3}^{+} \rightleftharpoons \mathrm{H}-\mathrm{NH}_{2}+\mathrm{H}^{+} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.